NUMERICAL MODELLING APPLICATIONS ON FRACTURE PREDICTIONS: AN EXAMPLE FROM THE BLUE LIAS FORMATION IN KILVE, UK

Adi Patria

Abstract


Numerical modeling using Comsol Multiphysics, with Finite Element Method, has been carried out to study fracture initiation, linkage, and deflection of the Blue Lias Formation. Data were from outcrop observation where hydrofractures were well observed. Three models were set up to understand how fractures initiated, linked and arrested. The Young’s modulus of shales (Esh) was set with the value of 1 GPa, 5 GPa, and 10 GPa. The fluid excess pressure was applied with the value of 5 MPa, 10 MPa, and 15 MPa. The Young’s modulus of the limestone (Elst) was a constant at 10 GPa. The first model showed how the overburden induces fracture initiation. The results indicated that tensile stress concentrated only within limestone and favour to form fractures. The second model was about linking of fractures. The result explained that shear stress was dominantly concentrated in limestone layers. Previous hydrofractures possibly linked up forming shear fractures and en-echelon fractures. The third model was run to understand fracture propagation and deflection. The result was that tensile stress concentrated at the hydrofracture tips close to the contacts between limestone and shale. Hydrofractures were deflected, and in some places, hydrofractures were likely started to propagate through shale.

Permodelan numerik dengan Comsol Multiphysics berdasarkan metode Elemen Terbatas  dilakukan untuk mempelajari inisiasi, hubungan, dan defleksi rekahan Formasi Blue Lias. Data berasal dari observasi singkapan dimana hydrofracture teramati. Tiga model dibuat untuk memahami bagaimana rekahan terinisiasi, terhubung, terambatkan dan terhenti. Modulus Young’s batulempung (Esh) diatur dengan nilai 1 GPa, 5GPa, dan 10 GPa. Tekanan kelebihan cairan (fluid excess pressure) yang diterapkan sebesar 5 MPa, 10 MPa, dan 15 MPa. Modulus Young’s batugamping (Elst) konstan sebesar 10 GPa. Model pertama menunjukkan bagaimana pembebanan mempengaruhi inisiasi rekahan. Hasil perhitungan menunjukkan bahwa tekanan tarik terkonsentrasi hanya pada lapisan batugamping dan memungkinkan terbentuknya rekahan. Model kedua mengenai hubungan rekahan. Model menunjukkan bahwa tekanan geser terkonsentrasi pada lapisan batugamping secara dominan. Hydrofracture yang telah ada akan terhubung membentuk rekahan geser and rekahan en-echelon. Model ketiga dihitung untuk memahami perambatan dan defleksi rekahan. Hasilnya menunjukkan bahwa tekanan tarik terkonsentrasi pada ujung hydrofracture dekat kontak lapisan batugamping dan batulempung. Hydrofracture terdefleksi dan pada beberapa titik mulai merambat menembus batulempung.


Keywords


Fluid excess pressure, hydrofracture, numerical modelling, Young’s modulus

Full Text:

PDF

References


Ahr, W. M., 2008. Geology of Carbonate Reservoirs: The Identification, Description, and Characterization of Hydrocarbon Reservoirs in Carbonate Rocks, DOI :10.1002/9780470370650.

Bons, P. D., Elburg, M. A., and Gomez-Rivas, E., 2012. A review of the formation of tectonic veins and their microstructures. Journal of Structural Geology 43, 33–62. DOI :10.1016/j.jsg.2012.07.005.

Brenner, S. L., and Gudmundsson, A., 2002. Permeability development during hydrofracture propagation in layered reservoirs. Norges geologiske undersokelse Bulletin 439, 71–77.

Gillespie, P. A., Walsh, J. J., Watterson, J., Bonson, C. G., and Manzocchi, T., 2001. Scaling relationships of joint and vein arrays from The Burren, Co. Clare, Ireland. Journal of Structural Geology 23(2–3), 183–201. DOI :10.1016/S0191-8141(00)00090-0.

Glen, R. A., Hancock, P. L., and Whittaker, A., 2005. Basin inversion by distributed deformation: The southern margin of the Bristol Channel Basin, England. Journal of Structural Geology 27(12), 2113–2134. DOI :10.1016/j.jsg.2005.08.006.

Gudmundsson, A., 2011. Rock Fractures in Geological Processes, DOI :10.1017/ CBO9780511975684.

Gudmundsson, A., Fjeldskaar, I., and Brenner, S. L., 2002. Propagation pathways and fluid transport of hydrofractures in jointed and layered rocks in geothermal fields. Journal of Volcanology and Geothermal Research 116(3–4), 257–278. DOI :10.1016/S0377-0273(02) 00225-1.

Khoei, A. R., Hirmand, M., Vahab, M., and Bazargan, M., 2015. An enriched FEM technique for modeling hydraulically driven cohesive fracture propagation in impermeable media with frictional natural faults: Numerical and experimental investigations. International Journal for Numerical Methods in Engineering 104(6), 439–468. DOI :10.1002/nme.4944.

Larsen, B., and Gudmundsson, A., 2010. Linking of fractures in layered rocks: Implications for permeability. Tectonophysics 492(1–4), 108–120. DOI :10.1016/j.tecto.2010.05.022.

Larsen, B., Gudmundsson, A., Grunnaleite, I., Sælen, G., Talbot, M. R., and Buckley, S. J., 2010. Effects of sedimentary interfaces on fracture pattern, linkage, and cluster formation in peritidal carbonate rocks. Marine and Petroleum Geology 27(7), 1531–1550. DOI :10. 1016/j.marpetgeo.2010.03.011.

Matte, P., 2001. The Variscan collage and orogeny (480-290 Ma) and the tectonic definition of the Armorica microplate: A review. Terra Nova 13(2), 122–128. DOI :10. 1046/j.1365-3121.2001.00327.x.

Maugis, D., 2000. Contact, Adhesion and Rupture of Elastic Solids Springer S, Springer, Berlin, Heidelberg. DOI :10.1007/978-3-662-04125-3.

Mohammadnejad, T., and Andrade, J. E., 2016. Numerical modeling of hydraulic fracture propagation, closure and reopening using XFEM with application to in-situ stress estimation. International Journal for Numerical and Analytical Methods in Geomechanics 40(15), 2033–2060. DOI :10.1002/nag.2512.

Peacock, D. C. P., 2002. Propagation, interaction and linkage in normal fault systems. Earth-Science Reviews 58(1–2), 121–142. DOI :10.1016/S0012-8252(01) 00085-X.

Peterson, R. E., 1955. Stress Concentration Design Factors: Charts and Relations Useful in Making Strength Calculations for Machine Parts and Structural Elements, Wiley.

Philipp, S. L., Afşar, F., and Gudmundsson, A., 2013. Effects of mechanical layering on hydrofracture emplacement and fluid transport in reservoirs. Frontiers in Earth Science 1. DOI :10.3389/feart.2013. 00004.

Pompe, W., 1971. I. N. Sneddon/M. Lowengrub, Crack Problems in the Classical Theory of Elasticity. (The SIAM Series in Applied Mathematics). VIII + 221 S. m. 57 Fig. New York/London/Sydney/ Toronto 1969. John Wiley & Sons, Inc. Preis geb. 140 s. net. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik 51(3), 238–239. DOI :10.1002/zamm. 19710510317.

Valko, P., and Economides, M. J., 1995. Hydraulic Fracture Mechanics, John Wiley & Sons.

Zhang, X., Jeffrey, R. G., and Thiercelin, M., 2007. Deflection and propagation of fluid-driven fractures at frictional bedding interfaces: A numerical investigation. Journal of Structural Geology 29(3), 396–410. DOI :10.1016/ J.JSG.2006.09.013.




DOI: http://dx.doi.org/10.14203/risetgeotam2018.v28.801

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Adi Patria

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS

 

Indexed by:

        

 

Plagiarism checker: