Lumpur Hitam Tanah Rawa Hutan Mangrove Karangsong (Kabupaten Indramayu): Komposisi Kimia dan Transformasi Fasa Mineral yang Dihasilkan melalui Penanganan secara Termal
Abstract
Penelitian ini dilakukan untuk menyelidiki kandungan unsur dan transformasi mineral-mineral utama lumpur hitam dari tanah rawa hutan mangrove Karangsong, Kabupaten Indramayu, Jawa Barat. Sampel lumpur hitam kering diberi perlakuan secara termal dan bertahap pada kisaran suhu 120 - 1000 °C. Kandungan mineral dan transformasinya kemudian dianalisis dengan metode difraksi serbuk sinar-X. Kandungan unsur-unsur berat sebelum dan sesudah perlakuan ditentukan dengan menggunakan metode fluoresensi sinar-X, sedangkan unsur-unsur yang lebih ringannya ditentukan berdasarkan interpretasi pola pergeseran spektrum FTIR. Berdasarkan tiga analisis dan karakterisasi, sampel lumpur mengandung unsur utama O, Si, Al, Fe, Cl, Na, S, dan Mg, dan sisanya masing-masing kurang dari 1% adalah K, Ca, Ti, P , Mn, V, Zn, Cr, Br, Rb, Cu, Ni, Ga, Y, dan Sc. Kehadiran unsur C dan N dideteksi secara kualitatif melalui pola spektrum inframerah. Fase yang terdeteksi pada sampel awal terutama meliputi kuarsa, hastingsit, halloisit, dan albit. Dua fase lainnya yang terdeteksi adalah pirit dan sfalerit. Dengan memperhatikan kandungan kimia dan transformasi mineral-mineralnya, lingkungan abiotik hutan mangrove menyimpan banyak informasi kimia yang berharga dalam memahami kemungkinan reaksi-reaksi katalisis di dalamnya sepanjang waktu geologi.
This research was to investigate the content of elements and transformation of the minerals of black mud samples from mangrove forest masrshland, Karangsong, Indramayu Regency, West Java. The dried black mud sample was treated gradually in the temperature ranges of 120 - 1000 °C. The mineral contents and their transformations were then examined by the X-ray powder diffraction method. The content of heavy elements before and after the treatment was determined using the X-ray fluorescence method, while the light elements was determined based on the interpretation of the FTIR spectrum shift patterns. The three analyses and characterizations indicate that the mud samples contained the main elements of O, Si, Al, Fe, Cl, Na, S, and Mg. The remaining of less than 1% contained K, Ca, Ti, P , Mn, V, Zn, Cr, Br, Rb, Cu, Ni, Ga, Y, and Sc. The presence of C and N elements were detected qualitatively through the infrared spectrum patterns. The phases detected in the initial sample mainly include quartz, hastingsite, halloysite, and albite. The other two phases detected were pyrite and sphalerite. Given the elements and transformation of such minerals, the abiotic environment of mangrove forests holds much valuable chemical information in understanding the possibility of catalysis reactions in them over geologic time.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Adams, J. M. dan McCabe, R. W., 2006. Clay Minerals as Catalysts. In F. Bergaya, B. Theng, & G. Lagaly (Eds.), Handbook of Clay Science, Elsevier, Oxford, pp. 541-581.
Ahtee, M., Inkinen, O., Koski, H., Pehkonen, S., dan Vikberg, P., 1970. Decomposition of equimolar NaBr-KBr mixed crystal. Zeitschrift für Naturforschung, 25(a), 1732-1736.
Alver, B. E., Dikmen G., dan Alver, Ö., 2016. Investigation of the influence of hebat treatment on the structural properties of illite rich clay mineral using FT-IR, 29Si MAS NMR, TG and DTA methods. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 17(5), 823-829.
Aoyagi, K., dan Kazama, T., 1980. Transformational changes of clay minerals, zeolites and silica minerals during diagenesis. Sedimentology, 27(2), 179-188.
Belier, M. & Bolm, C., 1998. Transition Metals for Organic Synthesis: Building Blocks and Fie Chemicals. Wiley-VCH, Weinheim.
Benites, V. d., Mendonca, E. d., Schaefer, C. E., Novotny, E. H., Reis, E. L., dan Ker, J. C., 2005. Properties of black soil humic acids from high altitude rocky complexes in Brazil. Geoderma, 127, 104-113.
Cairns-Smith, A. G., 1965. The origin of life and the nature of the primitive gene. Journal of Theoretical Biology, 10(1), 53-88.
Chai, Y., Qiu, X., Davis, J. W., Budinsky Jr., R. A., Bartels, M. J., dan Saghir, S. A., 2007. Effects of black carbon and montmorillonite clay on multiphasic hexachlorobenzene desorption from sediments. Chemosphere, 69, 1204-1212.
Cheng, J., Zhou, J., Liu, J., Zhou, Z., Huang, Z., Cao, X., Zaho, X., dan Cen, K., 2003. Sulfur removal at high temperature during coal combustion in furnaces: a review. Progress in Energy and Combustion Science, 29(5), 381-405.
Cuadros, J., Andrade, G., Ferreira, T. O., Partiti, C. S., Cohen, R., dan Vidal-Torrado, P., 2017. The mangrove reactor: Fast clay transformation and potassium sink. Applied Clay Science, 140, 50-58.
Eberl, D. D., 1984. Clay mineral formation and transformation in rocks and soils. Philosophical Transactions of Royal Society A, 311, 241-257.
Eusterhues, K., Rumpel, C., Kleber, M., dan Kogel-Knabner, I., 2003. Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Organic Geochemistry , 34, 1591-1600.
Gazulla, M. F., Sánchez, E., González, J. M., Portillo, M. C., dan Orduna, M., 2011. Relationship between certain ceramic roofing tile characteristics and biodeterioration. Journal of the European Ceramic Society, 31, 2753-2761.
Gil, A., Korili, S. A., Trujillano, R., dan Vicente, M. A., 2011. A review on characterization of pillared clays by speci. Applied Clay Science, 53, 97-105.
Gomes, C. d. dan Silva, J. B., 2007. Minerals and clay minerals in medical geology. Applied Clay Science, 36, 4-21.
Guthrie, F. C. dan Nance, J. T., 1931. Decomposition of alkali chlorides at high temperatures . Transactions of the Faraday Society, 27, 228-233.
Hansma, H. G., 2013. Possible origin of life between mica sheets: does life imitate mica? Journal of Biomolecular Structure and Dynamics, 31(8), 888-895.
Hashizume, H., 2012. Role of Clay Minerals in Chemical Evolution and the Origins of Life. Dalam M. Valaškova, & G. S. Martynkova (Eds.), Clay Minerals in Nature: Their Characterization, Modification and Application, InTech, Rijeka. pp. 191-208.
Housecroft, C. E. dan Sharpe, A. G., 2005. Inorganic Chemistry (2nd ed.), Pearson Education, Essex, p.p. 830-859.
Insley, H. dan Ewell, R. H., 1935. Thermal behavior of the kaolin minerals. Journal of Research of the National Bureau of Standards, 14, 615 – 627.
Khiari, I., Mefteh, S., Sánchez-Espejo, R., Cerezo, P., Aguzzi, C., López-Galindo, A., Jamoussi, F., dan Iborra, C. V., 2014. Study of traditional Tunisian medina clays used in therapeutic and cosmetic mud-packs. Applied Clay Science, 101, 141-148.
Laird, D. A., Chappell, M. A., Martens, D. A., Wershaw, R. L., dan Thompson, M., 2008. Distinguishing black carbon from biogenic humic substances in soil clay fractions. Geoderma, 143, 115-122.
Liou, J. G., Capitani, C. d., dan Frey, M., 1991. Zeolite equilibria in the system CaAI2Si2O8 - NaAlSi3O8 - SiO2 - H2O. New Zealand Journal of Geology and Geophysics, 34(3), 293-301.
Lothenbach, B., Bernard, E., dan Mäder, U., 2017. Zeolite formation in the presence of cement hydrates and albite. Physics and Chemistry of the Earth, 99, 77-94.
Metwally, Y. M. dan Chesnokov, E. M., 2012. Clay mineral transformation as a major source for authigenic quartz in thermo-mature gas shale. Applied Clay Science, 55, 138-150.
Mirabella, A. dan Egli, M., 2003. Structural transformations of clay minerals in soils of a climosequence in an Italian Alpine environment. Clays and Clay Minerals, 51(3), 264-278.
Mortland, M. M., 1970. Clay-Organic Complexes and Interactions. Advances in Agronomy, 22, 75-117.
Nagendrappa, G., 2011. Organic synthesis using clay and clay-supported catalysts. Applied Clay Science, 53, 106-138.
Nissenbaum, A., Rullkotter, J., dan Yechieli, Y., 2012. Are the curative properties of 'black mud' from the dead sea due to the presence of bitumen (asphalt) or other types of organic matter? Environmental Geochemistry and Health, 24, 327-335.
Plano, D., Lizarraga, E., Font, M., Palop, J. A., dan Sanmartin, C., 2009. Thermal stability and decomposition of sulphur and selenium compounds. Journal of Thermal Analysis and Calorimetry, 98, 559-566.
Pucci, A., Branciamore, S., Casarosa, M., Acqui, L. P., dan Gallori, E., 2010. Implications for an RNA-clay world: Interaction of cytosine with clay minerals. Journal of Cosmology, 10, 3398-3407.
Radeka, M., Ranogajec, J., Kiurski, J., Markov, S., dan Marinkovic-Neducin, R., 2007. Influence of lichen biocorrosion on the quality of ceramic roofing tiles. Journal of the European Ceramic Society, 27, 1763–1766.
Savage, D. dan Liu, J., 2015. Water/clay ratio, clay porosity models and impacts upon clay transformations. Applied Clay Science, 116, 16-22.
Serra, M. F., Conconi, M. S., Suarez, G., Agietti, E. F., dan Rendtorff, N. M., 2013. Firing transformations of an argentinean calcareous commercial clay. Cerâmica, 59, 254-261.
Sposito, G., 2008. The Chemistry of Soils (2nd ed.). New York: Oxford University Press.
Yang, D., Peng, S., Hartman, M. R., Gupton-Campolongo, T., Rice, E. J., Chang, A. K., Gu, Z., Lu, G. Q. (Max), dan Luo, D., 2013. Enhanced transcription and translation in clay hydrogel and implications for early life evolution. Scientific Reports, 3, 3165.
Zhou, C. H. dan Keeling, J., 2013. Fundamental and applied research on clay minerals: From climate and environment to nanotechnology. Applied Clay Science, 74, 3-9.
Zhou, R., Basu, K., Hartman, H., Matocha, C. J., Sears, S. K., Vali, H., dan Guzman, M. I., 2017. Catalyzed synthesis of zinc clays by prebiotic central metabolites. Scientific Reports, 7, 533.
DOI: http://dx.doi.org/10.14203/risetgeotam2019.v29.625
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Dede Suhendar, Esti Sundari, Asep Supriadin
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS
Indexed by:
Plagiarism checker: