Deterministic Modeling of Pasir Panjang Debris Flow Using Smoothed Particle Hydrodynamics (SPH)
Abstract
Keywords
Full Text:
PDFReferences
Agostino, V. D., Tecca, P. R., 2006. Some considerations on the application of the FLO-2D model for debris flow hazard assessment. WIT Transactions on Ecology and the Environment 90, 159-170, https://doi.org/10.2495/DEB060161
Ahmid, D. A., Wahyudi, T., Kusnawan, Gunawan, Zulfahmi, Supriyanto, B. A., Cahyono, S. S., Tarsono, Setiawan, L., 2023. Landslide potential in Cihanjuang, Cimanggung, Sumedang, West Java Province. Jurnal Riset Geologi dan Pertambangan 33, 89–97, https://doi.org/10.55981/risetgeotam.2023.1228
Alvioli, M., Baum, R. L., 2016. Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface. Environmental Modelling & Software 81, 122-135, https://doi.org/10.1016/j.envsoft.2016.04.002
Berger, C., Schlunnegger, F., McArdell, B. W., 2011. Direct measurement of channel erosion by debris flows, Illgraben, Switzerland. Journal of Geophysical Research 116, 1-18, https://doi.org/10.1029/2010JF001722
Blijenberg, H. M., 2007. Application of physical modelling of debris flow triggering to field conditions: limitations posed by boundary conditions. Engineering Geology 91, 25-33, https://doi.org/10.1016/j.enggeo.2006.12.010
Canelas, R. B., Dominguez, J. M., Crespo, A. J. C., Gomez-Gesteira, M., Ferreira, R. M. L., 2017. Resolved Simulation of a Granular-Fluid Flow with a Coupled SPH-DCDEM Model, Journal of Hydraulic Engineering 143, 1-22, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001331
Choi, C. E., Au-Yeung, S. C. H., Ng, C. W. W., Song, D., 2015. Flume investigation of landslide granular debris and water runup mechanisms, Géotechnique Letters 5, 28–32, https://doi.org/10.1680/geolett.14.00080
Choi, C. E., Goodwin, G. R., Ng, C. W. W., Cheung, D. K. H., Kwan, J. S. H., Pum, W. K., 2016. Coarse granular flow interaction with slit structures. Géotechnique Letters 6, 1–8, https://doi.org/10.1680/jgele.16.00103
Domínguez, J. M., Fourtakas, G., Altomare, C., Canelas, R. B., Tafuni, A., García-Feal, O., Estévez, I. M., Mokos, A., Vacondio, R., Crespo, A. J. C., Rogers, B. D., Stansby, P. K., Gesteira, M. G., 2021. State-of-the-art SPH solver DualSPHysics: from fluid dynamics to Multiphysics problems. Computational Particle Mechanics 9, 867-895, https://doi.org/10.48550/arXiv.2104.00537
Dzaki, M. F., Setiawan, H., Hidayat, R., 2024. Landslide susceptibility zonation using weight of evidence method in Mertelu and Tegalrejo, Gedangsari, Gunungkidul, Special Region of Yogyakarta, Indonesia. Jurnal Riset Geologi dan Pertambangan 34, 67-82, https://doi.org/10.55981/risetgeotam.2024.1299
Elkarmoty, M., Colla, C., Gabrielli, E., Kasmaeeyazdi, S., Tinti, F., Bondua, S., Bruno, R., 2017. Mapping and modelling fractures using ground penetrating radar for ornamental stone assessment and recovery optimization: Two case studies. Rudarsko-geološko--naftni zbornik 32(4), 63-76, https://doi.org/10.17794/rgn.2017.4.7
Federico, F., Cesali, C., 2019. Effects of granular collisions on the rapid coarse-grained materials flow. Géotechnique Letters 9, 1–6, https://doi.org/10.1680/jgele.18.00223
Fourtakas, G., Rogers, B. D., 2016. Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU). Advances in Water Resource 92, 186–199, https://doi.org/10.1016/j.advwatres.2016.04.009
Gotoh, T., Fukayama, D., Nakano, T., 2002. Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Physics of Fluids 14, 1065-1081, https://doi.org/10.1063/1.1448296
Hsu, Y., Liu, K., 2019. Combining TRIGRS and DEBRIS-2D models for the simulation of a rainfall infiltration induced shallow landslide and subsequent debris flow. Water 11, 890, https://doi.org/10.3390/w11050890
Hussin, H. Y., Luna, B. Q., van Westen, C. J., Christen, M., Malet, J. P., van Asch, T. W. J., 2012. Parameterization of a numerical 2-D debris flow model with entrainment: a case study of the Faucon catchment, Southern French Alps. Nat. Hazards Earth Syst. Sci. 12, 3075–3090, https://doi.org/10.5194/nhess-12-3075-2012
Jakob, M, 2010. State of the art in debris-flow research: the role of dendrochronology, 183-232 in Stoffen, M., Bollschweiler, M., Butler, D. R., Luckman, B. H., ed., Tree Rings and Natural Hazards. Springer.
Jakob, M., Hungr, O., 2005. Debris-flow Hazard and Related Phenomena. Praxis Publishing Ltd.
Janda, R. J., Scott, K. M., Nolan, K. M., Martinson, H. A., 1981. Lahar movement, effects, and deposits. United States Government Printing Office.
Jiang, Y. J., Zhao, Y., 2015. Experimental investigation of dry granular flow impact via both normal and tangential force measurements. Géotechnique Letters 5, 33–38, https://doi.org/10.1680/geolett.15.00003
Kastowo, 1975. Regional Geological Map of Majenang Quadrangle, Java, Scale1:100,000. Geological Agency of Indonesia.
Lo, Y. M. E., Shao, S., 2002. Simulation of near-shore solitary wave mechanics by an incompressible SPH method. Applied Ocean Research 24, 275-286, https://doi.org/10.1016/S0141-1187(03)00002-6
Mitsoulis, E., 2007. Flows of viscoplastic materials: Models and computations. The British Society of Rheology
Monaghan, J. J., 1992. Smoothed Particle Hydrodinamics. Annu. Rev. Astron. Astrophys. 30, 543-574, https://doi.org/10.1146/annurev.aa.30.090192.002551
Monaghan, J. J., 1994. Simulating Free Surface Flows with SPH. Journal of Computational Physics 110, 399–406, https://doi.org/10.1006/jcph.1994.1034
Monaghan, J. J., Kos, A., Issa, N., 2003. Fluid motion generated by impact. Journal of Waterway, Port, Coastal, Ocean Engineering 129, 250-259, https://doi.org/10.1061/(ASCE)0733-950X(2003)129:6(250)
Morris, J. P., Fox, P. J., Zhu, Y., 1997. Modeling Low Reynolds Number Incompressible Flows Using SPH. Journal of Computational Physics 130, 214-226, https://doi.org/10.1006/jcph.1997.5776
Nettleton, I. M., Martin, S., Hencher, S., Moore, R., 2005. Debris flow types and mechanisms. The Scottish Executive.
Papanastasiou, T. C., 1987. Flows of Materials with Yield. Journal of Rheology 31, 385–404, https://doi.org/10.1122/1.549926
Pierson, T. C., 1980. Erosion and deposition by debris flows at Mount Thomas, North Canterbury, New Zealand. Earth Surface Process 5, 227-247, https://doi.org/10.1002/esp.3760050302
Putra, M. H. Z., Dinata, I. A., Sadisun, I. A., Sarah, D., Aulia, A. N., Sukristiyanti, 2022. Modeling of individual debris flows based on DEMNAS using Flow-R: A case study in Sigi, Central Sulawesi. Jurnal Riset Geologi dan Pertambangan 32, 37-58, https://doi.org/10.14203/risetgeotam2022.v32.1215
Sadisun, I. A., Kartiko, R. D., Dinata, I. A., 2018. Numerical Simulation of Some Debris Flow Events in Central Java for Predicting Run-out Distributions. Proceedings of SEAGS--AGSSEA Conference 2018, 357-360, Jakarta, Indonesia.
Sadisun, I. A., Dinata, I.A., Kartiko, R. D., 2019. Run-out Distribution of Pasir Panjang Landslides Followed by the Debris Flow, Central Java, Indonesia. IAEG ARC12 2019, Jeju, South Korea.
Song, D., Choi, C. E., Zhou, G. G. D., Kwan, J. S. H., Sze, H. Y., 2018. Impulse Load Characteristics of Bouldery Debris Flow Impact. Géotechnique Letters 8, 111–117, https://doi.org/10.1680/jgele.17.00159
Vasquez, J., Estrada, M., 2023. A comparative study of the bivariate statistical methods and the Analytical Hierarchical Process for the assessment of mass movement susceptibility. A case study: The LM-116 Road – Peru. Rudarsko-geološko-naftni zbornik 38(62), 149-166, https://doi.org/ 10.17794/rgn.2023.1.13
DOI: http://dx.doi.org/10.55981/risetgeotam.2025.1457
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Indra Andra Dinata, Imam Achmad Sadisun, Prihadi Soemintadiredja, Lambok M Hutasoit

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Riset Geologi dan Pertambangan, ISSN 0125-9849 (print) 2354 6638 (online) by BRIN Publishing
Indexed by:
Plagiarism checker:
