Deterministic Modeling of Pasir Panjang Debris Flow Using Smoothed Particle Hydrodynamics (SPH)

Indra Andra Dinata, Imam Achmad Sadisun, Prihadi Soemintadiredja, Lambok M Hutasoit

Abstract


The debris flow can be modeled as non-Newtonian flow using physical and mathematical modeling methods based on rheological property measurements and movement parameters. The numerical simulation in this research used smoothed particle hydrodynamics (SPH) to solve the momentum and energy equations. The debris flow modeled in this research is located in the Bentarsari Basin, which is surrounded by hills composed of volcanic breccia from the Kumbang Formation (Tpk) and tends to be more susceptible to landslides and may become debris flows. The results of the numerical simulation begin with the collapse of the natural dam and become debris flow with 8.8 m maximum thickness. The debris flow destroyed the bridge in the 40s with 100 kPa pressure. A speed of 6 m/s was reached at 120 s. A small hill in the deposition area was hit by debris flow at 130 s causing 18 casualties. The debris flow enters the deposition area at the 150 s. The debris flow average velocity shows relatively transverse pattern (1-126 s), constant pattern (126-289 s), and random pattern (after 289 s). The debris flow average pressure shows steep negative gradient pattern (1-47 s) and relatively flat pattern (after 47 s). The average debris flow thickness shows a steep negative gradient pattern (1-13 s) and a gentle negative gradient pattern (after 13 s). The results of debris flow modeling using SPH can simulate the debris flow segregation process, which usually cannot be captured by conventional debris flow modeling software.

Keywords


landslide, debris flow, non-Newtonian flow, smoothed particle hydrodynamics, computational fluid dynamics

Full Text:

PDF

References


Berger, C., Schlunnegger, F., McArdell, B. W., 2011. Direct measurement of channel erosion by debris flows, Illgraben, Switzerland. Journal of Geophysical Research 116, 1-18, https://doi.org/10.1029/2010JF001722

Blijenberg, H. M., 2007. Application of physical modelling of debris flow triggering to field conditions: limitations posed by boundary conditions. Engineering Geology 91, 25-33, https://doi.org/10.1016/j.enggeo.2006.12.010

Choi, C. E., Au-Yeung, S. C. H., Ng, C. W. W., Song, D., 2015. Flume investigation of landslide granular debris and water runup mechanisms, Géotechnique Letters 5, 28–32, https://doi.org/10.1680/geolett.14.00080

Choi, C. E., Goodwin, G. R., Ng, C. W. W., Cheung, D. K. H., Kwan, J. S. H., Pum, W. K., 2016. Coarse granular flow interaction with slit structures. Géotechnique Letters 6, 1–8, https://doi.org/10.1680/jgele.16.00103

Domínguez, J. M., Fourtakas, G., Altomare, C., Canelas, R. B., Tafuni, A., García-Feal, O., Estévez, I. M., Mokos, A., Vacondio, R., Crespo, A. J. C., Rogers, B. D., Stansby, P. K., Gesteira, M. G., 2021. State-of-the-art SPH solver DualSPHysics: from fluid dynamics to multiphysics problems. Computational Particle Mechanics 9, 867-895, https://doi.org/10.48550/arXiv.2104.00537

Elkarmoty, M., Colla, C., Gabrielli, E., Kasmaeeyazdi, S., Tinti, F., Bondua, S., Bruno, R., 2017. Mapping and modelling fractures using ground penetrating radar for ornamental stone assessment and recovery optimization: Two case studies. Rudarsko-geološko-naftni zbornik 32(4), 63-76, https://doi.org/10.17794/rgn.2017.4.7

Federico, F., Cesali, C., 2019. Effects of granular collisions on the rapid coarse-grained materials flow. Géotechnique Letters 9, 1–6, https://doi.org/10.1680/jgele.18.00223

Fourtakas, G., Rogers, B. D., 2016. Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU). Advances in Water Resource 92, 186–199, https://doi.org/10.1016/j.advwatres.2016.04.009

Gotoh, T., Fukayama, D., Nakano, T., 2002. Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Physics of Fluids 14, 1065-1081, https://doi.org/10.1063/1.1448296

Jakob, M., Hungr, O. (2005). Debris-flow Hazard and Related Phenomena. Praxis Publishing Ltd.

Janda, R. J., Scott, K. M., Nolan, K. M., Martinson, H. A., 1981. Lahar movement, effects, and deposits. United States Government Printing Office.

Jiang, Y. J., Zhao, Y., 2015. Experimental investigation of dry granular flow impact via both normal and tangential force measurements. Géotechnique Letters 5, 33–38, https://doi.org/10.1680/geolett.15.00003

Kastowo, 1975. Regional Geological Map of Majenang Quadrangle, Java, Scale1:100,000. Geological Agency of Indonesia.

Lo, Y. M. E., Shao, S., 2002. Simulation of near-shore solitary wave mechanics by an incompressible SPH method. Applied Ocean Research 24, 275-286, https://doi.org/10.1016/S0141-1187(03)00002-6

Mitsoulis, E., 2007. Flows of viscoplastic materials: Models and computations. The British Society of Rheology.

Monaghan, J. J., 1992. Smoothed Particle Hydrodinamics. Annu. Rev. Astron. Astrophys. 30, 543-574, https://doi.org/10.1146/annurev.aa.30.090192.002551

Monaghan, J. J., 1994. Simulating Free Surface Flows with SPH. Journal of Computational Physics 110, 399–406, https://doi.org/10.1006/jcph.1994.1034

Monaghan, J. J., Kos, A., Issa, N., 2003. Fluid motion generated by impact. Journal of Waterway, Port, Coastal, Ocean Engineering 129, 250-259, https://doi.org/10.1061/(ASCE)0733-950X(2003)129:6(250)

Morris, J. P., Fox, P. J., Zhu, Y., 1997. Modeling Low Reynolds Number Incompressible Flows Using SPH. Journal of Computational Physics 130, 214-226, https://doi.org/10.1006/jcph.1997.5776

Nettleton, I. M., Martin, S., Hencher, S., Moore, R., 2005. Debris flow types and mechanisms. The Scottish Executive.

Papanastasiou, T. C., 1987. Flows of Materials with Yield. Journal of Rheology 31, 385–404, https://doi.org/10.1122/1.549926

Pierson, T. C., 1980. Erosion and deposition by debris flows at Mount Thomas, North Canterbury, New Zealand. Earth Surface Process 5, 227-247, https://doi.org/10.1002/esp.3760050302

Sadisun, I. A., Kartiko, R. D., Dinata, I. A., 2018. Numerical Simulation of Some Debris Flow Events in Central Java for Predicting Run-out Distributions. Proceedings of SEAGS-AGSSEA Conference 2018, 357-360, Jakarta, Indonesia.

Sadisun, I. A., Dinata, I.A., Kartiko, R. D., 2019. Run-out Distribution of Pasir Panjang Landslides Followed by the Debris Flow, Central Java, Indonesia. IAEG ARC12 2019, Jeju, South Korea.

Song, D., Choi, C. E., Zhou, G. G. D., Kwan, J. S. H., Sze, H. Y., 2018. Impulse Load Characteristics of Bouldery Debris Flow Impact. Géotechnique Letters 8, 111–117, https://doi.org/10.1680/jgele.17.00159

Vasquez, J., Estrada, M., 2023. A comparative study of the bivariate statistical methods and the Analytical Hierarchical Process for the assessment of mass movement susceptibility. A case study: The LM-116 Road – Peru. Rudarsko-geološko-naftni zbornik 38(62), 149-166, https://doi.org/ 10.17794/rgn.2023.1.13




DOI: http://dx.doi.org/10.55981/risetgeotam.2025.1457

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Indra Andra Dinata, Imam Achmad Sadisun, Prihadi Soemintadiredja, Lambok M Hutasoit

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Riset Geologi dan Pertambangan, ISSN 0125-9849 (print) 2354 6638 (online) by BRIN Publishing

Indexed by:

   

Plagiarism checker: