Study of Subsurface Structures for the Sungai Lilin, Coal Prospect Area, South Sumatra using Active Seismic Multichannel Analysis of Surface Waves

Ashar Muda Lubis, Anisa Rahayati, Arya J Akbar, Rida Samdara

Abstract


Indonesia’s dependency on coal, which powered ~47% of its electricity in 2018, highlights the need to optimize exploration amid rising energy demands and volatile fuel prices. This study aims to characterize subsurface structures in the Sungai Lilin coal prospect area, South Sumatra, within the coal-bearing Muara Enim Formation employing the Multichannel Analysis of Surface Waves (MASW) method. We carried out field seismic data collection using a PASI 16S24-P seismograph equipped with 24 geophones, spacing of 4 m. After having dispersion processes, which result in phase velocities (or group velocity) against frequency, we inverted phase velocities to extract subsurface structures through shear wave velocity (Vs) and density. By analyzing Vs variations, we mapped coal deposits at depths of 5–40 m with Vs values of 250–450 m/s, alongside soil, sand, claystone, and siltstone layers. Our subsurface structures derived MASW approach, integrated with borehole data, provided high-resolution 2-D models of young, shallow coal seams varying in thickness and depth. These findings highlight MASW’s efficacy for cost-effective, non-invasive coal exploration, offering insights into resource delineation that support energy security for Indonesia and sustainable coal exploration in similar geological settings.


Keywords


Subsurface, Structures, Seismic, velocitiy, Coal

Full Text:

PDF

References


Abbas, M. A., Abdelgowad, A. M., 2024. Application of seismic refraction and MASW geophysical techniques to characterize the subsoil structure under damaged buildings in Qeft city, Upper Egypt. Modeling Earth Systems and Environment. Model. Earth. Syst. Env. 10(3), 3547-3557. https://doi.org/10.1007/s40808-024-01960-1

Bessason, B., Erlingsson, S., 2011. Shear wave velocity in surface sediments. Jökull, 61, 51-64. https://doi.org/10.33799/jokull2011.61.051

Bishop, M. G., 2000. South Sumatra Basin Province, Indonesia: The Lahat/Talang Akar-Cenozoic Total Petroleum System, US Department of The Interior US Geological Survey.

Capizzi, P., Martorana, R., 2023. Geophysical subsoil characterization and modeling using cluster analysis for seismic microzonation purposes. Geosci, 13(8), 246. https://doi.org/10.3390/geosciences13080246

Chandran, D., Anbazhagan, P., 2017. Subsurface profiling using integrated geophysical methods for 2D site response analysis in Bangalore city, India: a new approach. J. Geophys. Eng. 14(5), 1300-1314. https://doi.org/10.1088/1742-2140/aa7bc4

Chen, H., Xu, B., Wang, J., Luan, L., Zhou, T., Nie, X., Mo, Y. L. 2019. Interfacial debonding detection for rectangular cfst using the masw method and its physical mechanism analysis at the meso-level. Sens. 19(12), 2778. https://doi.org/10.3390/s19122778

Chung, J. 2025. The Mineral Industry of Indonesia. In 2020–2021 Minerals Yearbook. U.S. Geological.

Dal Moro, G., Forte, E., Pipan, M. I. C. H. E. L. E., Sugan, M., 2006. Velocity spectra and seismic‐signal identification for surface‐wave analysis. Near Surf. Geophys. 4(4), 243-251. https://doi.org/10.3997/1873-0604.2005048

Dal Moro, G., Pipan, M., Gabrielli, P., 2007. Rayleigh wave dispersion curve inversion via genetic algorithms and marginal posterior probability density estimation. J. Appl. Geophys. 61(1), 39-55. https://doi.org/10.1016/j.jappgeo.2006.04.002

Du, N., Yang, T., Xu, T., Liu, Q., 2024. Incorporating topographic effects in surface wave tomography based on shortest-path ray tracing. Geophys. J. Int. 237(2), 1235-1248. https://doi.org/10.1093/gji/ggae115

Foti, S., Lai, C. G., Rix, G. J., Strobbia, C., 2014. Surface wave methods for near-surface site characterization. CRC Press, ISBN 9780429178535, https://doi.org/10.1201/b17268

Friederich, M. C., Moore, T. A., Flores, R. M., 2016. A regional review and new insights into SE Asian Cenozoic coal-bearing sediments: Why does Indonesia have such extensive coal deposits?. Int. J. Coal Geol. 166, 2-35. https://doi.org/10.1016/j.coal.2016.06.013

Friederich, M. C., Van Leeuwen, T., 2017. A review of the history of coal exploration, discovery and production in Indonesia: The interplay of legal framework, coal geology and exploration strategy. Int. J. Coal Geol. 178, 56-73. https://doi.org/10.1016/j.coal.2017.04.007

Fu, L., Pan, L., Ma, Q., Dong, S., Chen, X., 2021. Retrieving S-wave velocity from surface wave multimode dispersion curves with DispINet. J. Appl. Geophys. 193, 104430. https://doi.org/10.1016/j.jappgeo.2021.104430

Gan, S., Wang, S., Chen, Y., Zhang, Y., Jin, Z., 2015. Dealiased seismic data interpolation using seislet transform with low-frequency constraint. IEEE Geosci. Remote Sens. Lett. 12(10), 2150-2154. https://doi.org /10.1109/LGRS.2015.2453119

Hamed, A., Fat-Helbary, R. E. S., Mohamed, A. M., El-Faragawy, K. O., Gaber, A. A. E., Meneisy, A. M., 2024. Application of seismic refraction and MASW methods for investigating the Spillway Fault trace along the western side of the Aswan High Dam, Egypt. Acta Geod. Geophys. 59(1), 27-50. https://doi.org/10.1007/s40328-024-00437-y

Hamilton, W., 1979. Tectonics of the Indonesian Region: Geological Survey Professional Paper 1078, US Govt. Printing Office, Washington, USA.

Hussien, M. N., and Karray, M., 2015. Shear wave velocity as a geotechnical parameter: an overview. Can. Geotech. J. 53(2), 252-272. https://doi.org/10.1139/cgj-2014-0524

Kober, T., Schiffer, H. W., Densing, M., Panos, E., 2020. Global energy perspectives to 2060–WEC's World Energy Scenarios 2019. Energy Strategy Rev. 31, 100523. https://doi.org /10.1016/j.esr.2020.100523

Le Gratiet, L., and Garnier, J., 2014. Recursive co-kriging model for design of computer experiments with multiple levels of fidelity. Int. J. Uncertain. Quantif. 4(5). https://doi.org/10.1615/Int.J.UncertaintyQuantification.2014006914

Lopes, L. R., Lima, M. V. A. G. D., Stephenson, R. A., 2024. Study of the feasibility of the MASW seismic method in coal prospecting: a study based on a conceptual model for the Candiota mine, southern Brazil. REM, Int. Eng. J. 77(4), e230141. https://doi.org/10.1590/0370-44672023770141

Lubis, A. M., Saputra, A., Suhendra, S., Saputra, R., and Samdara, R. 2021. Penentuan Ketebalan Sedimen pada Segmen Kumering, Sesar Sumatra di Daerah Liwa Lampung Barat dengan Menggunakan Metode Seismik Aktif MASW. J. Lingk. Bencana Geol. 12(3), 137-147. https://doi.org/10.34126/jlbg.v12i3.334

Lubis, A. M., Samdara, R., Angraini, L., Ahmed, Z., Reeve, D. E., 2022. Imaging subsurface structures at fast eroding Coastal Areas in Northern Bengkulu using 2D Seismic MASW Method. Earth Syst. Environ. 6(2), 531-540. https://doi.org/10.1007/s41748-022-00301-5

Lubis, A. M., Larang, M. P., Fahmi, K., Shah, A. A., 2024. An analysis of coal seam lithology using the well-logging method for correlation of location X, Musi Banyuasin Coalfields, South Sumatra. Indones. J. Geosci. 11(2), 221-229. https://doi.org/10.17014/ijog.11.2.221-229

Lu, Y., Han, J., Zhang, H., Xu, Z., Yang, Z., Yang, M., Guo, I., Zhu, H., Qi, Y., 2023. Study on coal seam physical characteristics and influence on stimulation: A case study of coal seams in Zhengzhuang block. Front. Earth Sci. 10, 1031419. https://doi.org/10.3389/feart.2022.1031419

McCaffrey, R., 2009. The tectonic framework of the Sumatran subduction zone. Annu. Rev. Earth Planet. Sci. 37(1), 345-366. https://doi.org/10.1146/annurev.earth.031208.100212

Nasution, F. P., and Nalendra, S., 2017. Characterization of coal quality based on ash content from M2 Coal-Seam Group, Muara Enim formation, South Sumatra basin. J. Geoscience Eng. Environ. Technol. 2(3), 203-209. https://doi.org/10.24273/jgeet.2017.2.3.292

Ningrum, W. S. P., 2024. Coal Analysis and Depositional Environments Between South Sumatra-Jambi Basin. Available at SSRN 4698931. http://dx.doi.org/10.2139/ssrn.4698931

Olafsdottir, E. A., Erlingsson, S., and Bessason, B., 2020. Open-source MASW inversion tool aimed at shear wave velocity profiling for soil site explorations. Geosci, 10(8), 322. https://doi.org/10.3390/geosciences10080322

Park, C. B., Miller, R. D., and Xia, J., 1999. Multichannel analysis of surface waves. Geophys. 64(3), 800-808. https://doi.org/10.1190/1.1444590

Park, C. B., 2016, MASW analysis of bedrock velocities (Vs and Vp). In SEG International Exposition and Annual Meeting (pp. SEG-2016). SEG.

Selim, E. I., Basheer, A. A., Elqady, G., and Hafez, M. A. 2014. Shallow seismic refraction, two-dimensional electrical resistivity imaging, and ground penetrating radar for imaging the ancient monuments at the western shore of Old Luxor city, Egypt. Archaeological Disc. 2(2), 31-43. http://doi.org/10.4236/ad.2014.22005

Socco, L. V., Foti, S., and Boiero, D., 2010. Surface-wave analysis for building near-surface velocity models - Established approaches and new perspectives. Geophys. 75(5), 75A83-75A102. https://doi.org/10.1190/1.3479491

Sosrowidjojo, I. B., and Saghafi, A., 2009. Development of the first coal seam gas exploration program in Indonesia: Reservoir properties of the Muaraenim Formation, South Sumatra. Int. J. Coal Geol. 79(4), 145-156. https://doi.org/10.1016/j.coal.2009.07.002

Tian, Z., Huo, L., Gao, W., Li, H., and Song, G., 2017. Modeling of the attenuation of stress waves in concrete based on the Rayleigh damping model using time-reversal and PZT transducers. Smart Mater. Struct. 26(10), 105030. https://doi.org/10.1088/1361-665X/aa80c2

Tsai, C. C., Kishida, T., 2015. Unified correlation between SPT-N and shear wave velocity for all soil types. In 6th International Conference on Earthquake Geotechnical Engineering1-4 November.

Wair, B. R., DeJong, J. T., Shantz, T., 2012. Guidelines for estimation of shear wave velocity profiles. Pacific Earthquake Engineering Research Center.

Williams, H. H., Eubank, R. T., 1995. Hydrocarbon habitat in the rift graben of the Central Sumatra Basin, Indonesia. Geological Society, London, Special Publications, 80(1), 331-371. https://doi.org/10.1144/GSL.SP.1995.080.01.16

Xia, J., 2006. Delineating Subsurface Features with the MASW Method at Maxwell AFB in Montgomery, Alabama. KGS Open-File Report 2006-1, http://www.kgs.ku. edu/Geophysics/OFR/2006/OFR06 _01/index. html

Xia, J., Miller, R. D., Xu, Y., Luo, Y., Chen, C., Liu, J., Ivanov, J., Zeng, C., 2009. High-frequency Rayleigh-wave method. J. Earth Sci. 20(3), 563-579. https://doi.org/10.1007/s12583-009-0047-7

Yudiartono, Anindhita, Sugiyono, A., La Ode M. A., Wahid, dan Adiarso, 2018. Outlook Energi Indonesia 2018. ISBN 978-602-1328-05-7, Pusat Pengkajian Industri Proses dan Energi, BPPT, Jakarta.




DOI: http://dx.doi.org/10.55981/risetgeotam.2025.1391

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Ashar Muda Lubis

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Riset Geologi dan Pertambangan, ISSN 0125-9849 (print) 2354 6638 (online) by BRIN Publishing

Indexed by:

   

Plagiarism checker: