ADAPTIVE PRECONDITIONING KRYLOV SUBSPACE METHODS FOR EFFICIENT NUMERICAL GROUNDWATER FLOW MODELING IN STEADY-STATE CONDITIONS
Abstract
Keywords
Full Text:
PDFReferences
Aksoylu, B., Klie, H., 2009. A family of physics-based preconditioners for solving elliptic equations on highly heterogeneous media. Applied Numerical Mathematics 59, 1159–1186. https://doi.org/https://doi.org/10.1016/j.apnum.2008.06.002
Bair, E.S., 2016. Applied Groundwater Modeling-Simulation of Flow and Advective Transport. Groundwater. https://doi.org/10.1111/gwat.12464
Benali, A., 2013. Groundwater modelling: Towards an estimation of the acceleration factors of iterative methods via an analysis of the transmissivity spatial variability. Comptes Rendus Geoscience 345, 36–46. https://doi.org/https://doi.org/10.1016/j.crte.2012.11.001
Bujurke, N.M., Kantli, M.H., 2021. Numerical Simulation of Influence of Surface Features on the Elastohydrodynamic Lubrication of Sliding Line Contact Using Krylov Subspace Method. Computational Mathematics and Modelling 32, 198–220. https://doi.org/10.1007/s10598-021-09526-x
Cameron, J., 2012. Groundwater Essentials.
Domenico, P.A., Schwartz, F.W., 1990. Physical and chemical hydrogeology.
Downar, T.J., Joo, H.G., 2001a. A preconditioned Krylov method for solution of the multi-dimensional, two fluid hydrodynamics equations. Ann Nucl Energy 28, 1251–1267. https://doi.org/https://doi.org/10.1016/S0306-4549(00)00124-9
Downar, T.J., Joo, H.G., 2001b. A preconditioned Krylov method for solution of the multi-dimensional, two fluid hydrodynamics equations. Ann Nucl Energy 28, 1251–1267. https://doi.org/https://doi.org/10.1016/S0306-4549(00)00124-9
Fetter, C.W., 2001. Applied Hydrogeology Fourth Edition, Applied Hydrogeology. https://doi.org/0-13-088239-9
Fitts, C.R., 2013. Groundwater Science, Groundwater Science. https://doi.org/10.1016/C2009-0-62950-0
Hashimoto, Y., Nodera, T., 2022. A preconditioning technique for Krylov subspace methods in RKHSs. J Comput Appl Math 415, 114490. https://doi.org/https://doi.org/10.1016/j.cam.2022.114490
Il'in, V.P., 2021. Iterative Preconditioned Methods in Krylov Spaces: Trends of the 21st Century. Computational Mathematics and Mathematical Physics 61, 1750–1775. https://doi.org/10.1134/S0965542521110099
Jackson, J.M., 2007. Hydrogeology and groundwater flow model, central catchment of bribie island, southeast queensland 1–134.
Jain, S., 2014. Groundwater, in: Springer Geology. https://doi.org/10.1007/978-81-322-1539-4_9
Jolivet, P., Roman, J.E., Zampini, S., 2021. KSPHPDDM and PCHPDDM: Extending PETSc with advanced Krylov methods and robust multilevel overlapping Schwarz preconditioners. Computers & Mathematics with Applications 84, 277–295. https://doi.org/https://doi.org/10.1016/j.camwa.2021.01.003
Kelbe, B.E., Taylor, R.H., Haldorsen, S., 2011. Groundwater hydrology, in: Ecology and Conservation of Estuarine Ecosystems: Lake St Lucia as a Global Model. https://doi.org/10.1017/CBO9781139095723.010
Kuether, R.J., Steyer, A., 2024. Large-scale harmonic balance simulations with Krylov subspace and preconditioner recycling. Nonlinear Dyn 112, 3377–3398. https://doi.org/10.1007/s11071-023-09171-6
Nugraha, G.U., Bakti, H., Lubis, R.F., Nur, A.A., 2024. Jakarta groundwater modeling: a review. Appl Water Sci 14, 186. https://doi.org/10.1007/s13201-024-02168-5
Quillen, P., Ye, Q., 2010a. A block inverse-free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems. J Comput Appl Math 233, 1298–1313. https://doi.org/https://doi.org/10.1016/j.cam.2008.10.071
Quillen, P., Ye, Q., 2010b. A block inverse-free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems. J Comput Appl Math 233, 1298–1313. https://doi.org/https://doi.org/10.1016/j.cam.2008.10.071
Reilly, T.E., Harbaugh, A.W., 2004. Guidelines for Evaluating Ground-Water Flow Models. Scientific Investigations Report 2004-5038 37. https://doi.org/10.1017/CBO9781107415324.004
Remson, I., 1982. Introduction to Groundwater Modeling: Finite Difference and Finite Element Methods. Eos, Transactions American Geophysical Union 63, 778. https://doi.org/https://doi.org/10.1029/EO063i037p00778-02
Sabaté Landman, M., Jiang, J., Zhang, J., Ren, W., 2024. Augmented flexible Krylov subspace methods with applications to Bayesian inverse problems. Linear Algebra Appl. https://doi.org/https://doi.org/10.1016/j.laa.2024.05.007
Todd, D.K., Mays, L.W., 2005. Groundwater hydrology.
Wang, H.F., Anderson, M.P., 1982. Introduction to Groundwater Modeling: Finite Difference and Finite Element Methods.
DOI: http://dx.doi.org/10.55981/risetgeotam.2024.1345
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Gumilar Utamas Nugraha, Hendra Bakti, Hendra Bakti, Rachmat Fajar Lubis, Rachmat Fajar Lubis
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Publish by BRIN Publishing (Penerbit BRIN)
Indexed by:
Plagiarism checker: