TWO-DIMENSIONAL INVERSION MODELING OF MAGNETOTELLURIC (MT) SYNTHETIC DATA OF A GRABEN STRUCTURE USING SimPEG

Imamal Muttaqien, Jajang Nurjaman

Abstract


The magnetotelluric (MT) method is a passive exploration method in geophysics that utilizes natural electromagnetic waves as a signal source. MT operates in the frequency range of 10-5 - 106 Hz, designed to study the structure of the conductivity below the earth's surface with a depth range from several tens of meters to the upper mantle. In this paper, 2-dimensional inversion modeling is performed on MT synthetic data using the SimPEG software. First, forward modeling is done by making a 2-dimensional conductivity model in the form of a valley (graben), which aims to produce MT synthetic data in TE (transverse electric) mode, TM (transverse magnetic) mode, and a combination of TE mode and TM mode. Next, an inversion modeling is performed on the MT synthetic data by adding a 5% Gaussian noise and a 10-5 floor as data uncertainty to obtain a 2-dimensional conductivity inversion model. The final result can be validated by comparing the true model and the inversion model and between observational data (synthetic) and predictive predicted data. The results of this study provide a significant fit of the model and suitability of the data. The inversion quality is validated with an RMS Error for TE mode of 0.349%, TM mode of 0.348%, and a combination of TE and TM mode of 0.249%.

 

 


Keywords


magnetotelluric , two-dimensional inversion modelling, SimPEG, synthetic data

Full Text:

PDF

References


Bücker, M., García, S.L., Guerrero, B.O., Caballero, M., Pérez, L., Caballero, L., Pita, C., Paz, D., Sánchez-galindo, A., Villegas, F.J., Orozco, A.F., Brown, E., Werne, J., Garcés, B.V., Schwalb, A., Kemna, A., Sánchez-alvaro, E., Launizar-martínez, N., Valverde-placencia, A., Garay-jiménez, F., 2017. Geoelectrical and Electromagnetic Methods Applied to Paleolimnological Studies : Two Examples from Desiccated Lakes in the Basin of Mexico.

Cagniard, L., 1953. Basic Theory of the Magneto-telluric Method of Geophysical Prospecting. Geophysics 18, 605 – 635.

Chave, A.D., Jones, A.G., 2012. The Magnetotelluric Method Theory and Practice. Cambridge University Press, Cambridge.

Cockett, R., Kang, S., Heagy, L.J., Pidlisecky, A., Oldenburg, D.W., 2015. SimPEG: An Open Source Framework for Simulation and Gradient Based Parameter Estimation in Geophysical Applications. Comput. Geosci. 85, 142–154. https://doi.org/10.1016/j.cageo.2015.09.015

Grandis, H., 2009. Pengantar Pemodelan Inversi Geofisika. Himpunan Ahli Geofisika Indonesia (HAGI), Bandung.

Heimann, S., Vasyura-bathke, H., Sudhaus, H., Isken, M.P., Kriegerowski, M., Steinberg, A., Dahm, T., 2019. A Python Framework for Efficient Use of Pre-Computed Green’s Functions in Seismological and Other Physical Forward and Inverse Source Problems. Solid Earth 10, 1921–1935. https://doi.org/https://doi.org/10.5194/se-10-1921-2019

Key, K., 2016. MARE2DEM: a 2-D Inversion Code for Controlled-Source Electromagnetic and Magnetotelluric Data. Geophys. J. Int. 207, 571–588. https://doi.org/10.1093/gji/ggw290

Loke, M.H., Barker, R.D., 1996. Rapid Least-squares Inversion of Apparent Resistivity Pseudosections by a Quasi-Newton Method. Geophys. Prospect. 44, 131–1 52.

Naidu, G.D., 2012. Magnetotellurics : Basic Theoretical Concepts. Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-28442-7

Rikitake, T., 1948. Notes on the Electromagnetic Induction within the Earth. Earthq. Res. Inst. 1–9.

Rücker, C., Günther, T., Wagner, F.M., 2017. pyGIMLi : An Open-Source Library for Modelling and Inversion in Geophysics. Comput. Geosci. 109, 106–123. https://doi.org/10.1016/j.cageo.2017.07.011

SimPEG [WWW Document], 2013a. URL https://github.com/simpeg/tle- magnetotelluric_inversion/blob/master/notebooks/3_MT1D_5layer_inversion.ipynb (accessed 10.17.20).

SimPEG [WWW Document], 2013b. URL https://github.com/simpeg/simpeg/blob/master/examples/07-nsem/plot_fwd_nsem_MTTipper3D.py (accessed 10.17.20).

Simpson, F., Bahr, K., 2005. Practical Magnetotellurics. Cambridge University Press, Cambridge.

Sism, W.E., Bostick, F.X., 1969. Methods of Magnetotelluric Analisys 1–94.

Tezkan, B., Muttaqien, I., Saraev, A., 2018. Mapping of Buried Faults using the 2D Modelling of Far-field Controlled Source Radiomagnetotelluric Data. Pure Appl. Geophys. 1–16. https://doi.org/10.1007/s00024-018-1980-0

Tikhonov, A.N., 1950. On Determination of Electrical Characteristics of the Deep Layers of the Earth’s Crust. Geophys. Inst. Acad. Sci. USSR 2, 295–297.

Uieda, L., Jr, V.C.O., Barbosa, V.C.F., 2013. Modeling the Earth with Fatiando a Terra. Proc. 12th Python Sci. Conf. 92–98.

Unsworth, M., 2009. Introduction to Electromagnetic Exploration Methods. Geophys. 223 1–5.

Unsworth, M., 2007. Magnetotellurics: Encyclopedia of Geomagnetism and Paleomagnetism 1–8.

Varga, M. de la, Schaaf, A., Wellmann, F., 2019. GemPy 1.0: Open-Source Stochastic Geological Modeling and Inversion. Geosci. Model Dev. 12, 1–32. https://doi.org/https://doi.org/10.5194/gmd-12-1-2019

Vozoff, K., Nabighian, M.N., 1991. The Magnetotelluric Method. Chapter 8 In Electromagnetic Methods in Applied Geophysics-Applications Part A and Part B, Volume 2. ed. Society of Exploration Geophysicists, United States of America.

Zonge, K.L., Hughes, L.J., Nabighian, M.N., 1991. Controlled Source Audio-Frequency Magnetotellurics. Chapter 9 In Nabighian, M. N., Electromagnetic Methods in Applied Geophysics Applications Part A and Part B., Volume 2. ed. Society of Exploration Geophysicists, United States of America.




DOI: http://dx.doi.org/10.14203/risetgeotam2021.v31.1121

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Imamal Muttaqien, Jajang Nurjaman

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS

 

Indexed by:

        

 

Plagiarism checker: