ESTIMASI IMBUHAN AIRTANAH DAS CIDANAU MENGGUNAKAN MODEL NERACA KESETIMBANGAN AIR
Abstract
Airtanah merupakan faktor penting bagi pembangunan ekonomi di wilayah Serang Barat dan Kota Cilegon, dimana kedua wilayah ini terletak di dalam DAS Cidanau. Selain itu, imbuhan airtanah sangat dibutuhkan untuk memastikan keberlanjutan dan pengelolaan airtanah di suatu wilayah. Penelitian ini bertujuan untuk mengestimasi resapan airtanah DAS Cidanau menggunakan metode Thornthwaite, Dingman, Dingman−Hamon dan Edijatno−Michel. Keempat metode estimasi pengimbuhan airtanah tersebut merupakan metode kesetimbangan air yang berlandaskan model neraca kesetimbangan air. Software ESPERE version 2 digunakan untuk menganalisis kesetimbangan air berdasarkan keempat metode tersebut. Hasil penelitian menunjukkan terdapat tiga klaster nilai imbuhan airtanah di lokasi penelitian yaitu Thronthwaite (157 mm/tahun), Dingman−Hamon (125 mm/tahun), dan Edijatno−Michel (186 mm/tahun). Ketiga perbedaan nilai ini disebabkan oleh adanya perbedaan kalkulasi nilai hujan efektif metode- metode tersebut, dimana metode Dingman dan metode Edijatno−Michel memiliki kecenderungan pola kalkulasi yang sama. Imbuhan airtanah hanya sekitar 7,8 – 11,6 % dari jumlah hujan tahunan yang ada di lokasi penelitian. Sekitar 80 % dari hujan tahunan di konversikan menjadi evapotranspirasi potensial dan sisanya menjadi limpasan permukaan. Dengan mempertimbangkan kondisi geologi - hidrometeorologi Indonesia yang cenderung kompleks, metode Thornthwaite dan metode Dingman−Hamon direkomendasikan untuk perhitungan nilai imbuhan airtanah yang ada di Indonesia.
ABSTRACT − Groundwater Recharge Estimation using Water Budget Method in Cidanau Watershed. Groundwater is an important factor for economic development in West Serang and Cilegon City. These areas are located within the Cidanau watershed. Moreover, groundwater recharge is crucial to ensure the sustainability and the management of groundwater in an area. This study aims to estimate groundwater recharge in the Cidanau watershed using the Thornthwaite, Dingman, Dingman−Hamon, and Edijatno−Michel methods. These four groundwater recharge estimation methods are water budget method based on the water balance model analysis using the ESPERE version 2 software. The results show three clusters of annual groundwater recharge values in the research location, which are Thronthwaite (157 mm/year), Dingman−Hamon (125 mm / year), and Edijatno−Michel (186 mm / year). The three different values were derived from differences in the effective rainfall values calculations in those three methods. The Dingman and the Edijatno−Michel method tend to have a similar calculation pattern. The groundwater recharge is only 7.8 − 11.6 % of the total annual rainfall in the study area. It is estimated that 80% of the annual rainfall is converted into potential evapotranspiration, and the rest becomes surface runoff.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Agriculture, Ministry of, 2015. Water conservation factsheet: Soil water storage capacity and avilable soil moisture. Water Conservation Factsheet, 1619, 1–4. http://www.droughtmanagement.info/ literature/BC_MA_Soil_Water_Storage_Capacity_2005.pdf.
Anderson, D. M., Glibert, P. M., & Burkholder, J. M., 2002. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries. https://doi.org/10.1007/BF02804901.
Bakundukize, C., van Camp, M., & Walraevens, K., 2011. Estimation of groundwater recharge in Bugesera Region Burundi using soil moisture budget approach. Geologica Belgica 14(1), 85-102.
Barron, O. V., Barr, A. D., & Donn, M. J., 2013. Effect of urbanization on the water balance of a catchment with shallow groundwater. Journal of Hydrology 485, 162-176. https://doi.org/10.1016/j.jhydrol.2012.04.027.
Basu, N. B. & Van Meter, K., 2014. Sustainability of Groundwater Resources. Comprehensive Water Quality and Purification 4, 57-75. https://doi.org/ 10.1016/B978-0-12-382182-9.00062-1.
Böhlke, J. K., 2002. Groundwater recharge and agricultural contamination. Hydrogeology Journal 10 (1), 153-179. https://doi.org/ 10.1007/s10040-001-0183-3.
Boughton, W., 2005. Catchment water balance modelling in Australia 1960-2004. Agricultural Water Management 71(2), 91-116. https://doi.org/10.1016/j.agwat. 2004.10.012.
Chapman, T.G. & Maxwell, A.I., 1996. Baseflow separation−Comparison of numerical methods with tracer experiments. Proceedings of Hydrology and Water Resources Symposium 1996, Publication 96/05, 539–545. Barton, Australia: Institution of Engineers Australia, Hobart.
D’Almeida, C., Vörösmarty, C. J., Marengo, J. A., Hurtt, G. C., Dingman, S. L., & Keim, B. D., 2006. A water balance model to study the hydrological response to different scenarios of deforestation in Amazonia. Journal of Hydrology 331 (1-3), 125-136. https://doi.org/10.1016/j.jhydrol.2006.05.027.
de Vries, J. J. & Simmers, I., 2002. Groundwater recharge: An overview of process and challenges. Hydrogeology Journal 10, 5-17. https://doi.org/10.1007/s10040-001-0171-7
Delin, G.N., Healy, R.W., Lorenz, D.L., & Nimmo, J.R., 2007. Comparison of local- to regional-scale estimates of groundwater recharge in Minnesota, USA. Journal of Hydrology 334 (1–2), 231–249.
Dingman, S. L., 2015. Physical Hydrology, 3rd ed. Waveland Press. Long Grove, Illinois. 643 pp.
Dingman, S. L., 2002. Physical Hydrology, 2nd ed. Waveland Press. Long Grove, Illinois. 575 pp.
Eckhardt, K., 2005. How to construct recursive digital filters for baseflow separation. Hydrological Processes 19 (2), 507–515.
Edijatno dan Michel C., 1989. Un modèle pluie-débit journalier à trois paramètres. La Houille Blanche, n°2, pp 113-122. https://doi.org/10.1051/lhb/1989007.
FAO, 2018. CROPWAT 8.0. In Land and water, databases and software, CropWat.
Gleeson, T., Wada, Y., Bierkens, M. F. P., & Van Beek, L. P. H., 2012. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197-200. https://doi.org/10.1038/nature11295.
Guardiola-Albert, C., Martos-Rosillo, S., Pardo-Igúzquiza, E., Durán Valsero, J. J., Pedrera, A., Jiménez-Gavilán, P., & Liñán Baena, C., 2015. Comparison of Recharge Estimation Methods During a Wet Period in a Karst Aquifer. Groundwater 53(6), 885-895. https://doi.org/10.1111/ gwat.12310
Guttman, J., & Zuckerman, H., 1995. Flow model in the eastern basin of the Judea and Samaria hills. Report No. 01/95/ 66. In Hebrew. Tel Aviv, Israel: Tahal Consulting Engineers Ltd.
Hamon, W.R., 1961, Estimating potential evapotranspiration: Journal of the Hydraulics Division, Proceedings of the American Society of Civil Engineers 87, 107–120.
Hartanto, P., 2017. Perhitungan neraca air DAS Cidanau menggunakan metode Thornthwaite. RISET Geologi Dan Pertambangan, 27(2), 213–225. https://doi.org/10.14203/risetgeotam2017.v27.443.
Hartanto, P., Delinom, R. M., & Hendarmawan, H., 2019. Kualitas air pada puncak musim kemarau di Daerah Rawa Danau Kabupaten Serang. RISET Geologi Dan Pertambangan, 29(1), 13-25. https://doi. org/10.14203/risetgeotam2019.v29.1021.
Hidayah, E., Iriawan, N., Anwar, N., & Edijatno, E., 2011. Generating Hourly Rainfall Model using Bayesian Time Series Model A Case Study at Sentral Station, Bondowoso. IPTEK The Journal for Technology and Science 22(1), 50-56. https://doi.org/10.12962/j20882033.v22i1.57.
Islam, S., Singh, R. K., & Khan, R. A., 2016. Methods of estimating groundwater recharge. International Journal of Engineering Associates 5(2), 6-9.
Jaworska-Szulc, B., 2009. Groundwater flow modelling of multi-aquifer systems for regional resources evaluation: The Gdansk hydrogeological system, Poland. Hydrogeology Journal 176, 1521–1542. https://doi.org/10.1007/s10040-009-0473-8
Johnson, A. I., 1967. Specific Yield Compilation of Specific Yields for Various Materials-- Hydrologic properties of earth materials. Geological Survey Water-Supply Paper 1662-D, 80. https://pubs.usgs.gov/wsp/ 1662d/report.pdf
Kessler, H., 1967, Water balance investigations in the karstic regions of Hungary. Red Book IASH n°73., Dubrovnik Symposium, Oct., 1965, 91-105, http://ks360352. kimsufi.com/redbooks/073.html.
Kobiyama, M., 2008. Water balance in Cubatão-Sul river catchment, Santa Catarina, Brazil. Ambiente e Agua - An Interdisciplinary Journal of Applied Science 3(1), 5-17. https://doi.org/10.4136/ambi-agua.38.
Konikow, L.F., & Kendy, E., 2005. Groundwater depletion: A global problem. Hydrogeology Journal 13, 317-320. https://doi.org/10.1007/s10040-004-0411-8
Křeček, J., Turek, J., Ljungren, E., Stuchlík, E., & Šporka, F., 2006. Hydrological processes in small catchments of mountain headwater lakes: The Tatra Mountains. Biologia 61(18), S1-S10. https://doi.org/ 10.2478/ s11756-006-0115-8.
Lanini, S., 2015. ESPERE User Guide.
Lanini, S., & Caballero, Y., 2016. Groundwater recharge and associated uncertainty estimation combining multi-method and multi-scale approaches. Environmental Modelling and Software for Supporting a Sustainable Future, Proceedings - 8th International Congress on Environmental Modelling and Software, IEMSs 2016, 553–560.
Lanini, Sandra, Caballero, Y., Seguin, J.J., & Maréchal, J.C., 2016. ESPERE-A Multiple-Method Microsoft Excel Application for Estimating Aquifer Recharge. Groundwater 54(2), 155-156. https://doi.org/10.1111/ gwat.12390
Mauser, W. & Ludwig, R., 2016. Groundwater recharge. In: Mauser W., Prasch M. (eds) Regional Assessment of Global Change Impacts. Springer, Cham. https://doi.org/ 10.1007/978-3-319-16751-0_24.
Mintz, Y. & Serafini, Y.V., 1992. A global monthly climatology of soil moisture and water balance. Climate Dynamics 8, 13-27. https://doi.org/10.1007/BF00209340.
Monteith, J.L., 1965. Evaporation and environment. Symposia of the Society for Experimental Biology 19, 205-235.
Niazi, A., Bentley, L.R., & Hayashi, M., 2017. Estimation of spatial distribution of groundwater recharge from stream baseflow and groundwater chloride. Journal of Hydrology 546, 380-392. https://doi.org/10.1016/j.jhydrol.2017.01.032.
Rogers, B.P. & Hall, A.W., 2003. Effective Water Governance. Global Water Partnership. Stockholm. 45 pp.
Rusmana, E., Suwitodirdjo, K., & Suharsono, 1991. Peta Geologi Lembar Serang Jawa Skala 1:100.000, Pusat Survey Geologi, Bandung.
Sanford, W., 2002. Recharge and groundwater models: An overview. Hydrogeology Journal 10, 110–120. https://doi.org/ 10.1007/s10040-001-0173-5
Santosa, S., 1991. Peta Geologi Lembar Anyer Jawa Barat, Skala 1:100.000, Pusat Survey Geologi, Bandung.
Seiler, K. -P. & Gat, J.R., 2007. Groundwater recharge from runoff, infiltration and percolation. Springer. Netherlands. 248 pp. https://doi.org/ 10.1007/978-1-4020-5306-1
Simmers, E.I., 1987. Estimation of natural groundwater recharge. EOS 70(9), 131. https://doi.org/10.1029/89eo00076.
Singh, A., Panda, S.N., Uzokwe, V.N E., & Krause, P., 2019. An assessment of groundwater recharge estimation techniques for sustainable resource management. Groundwater for Sustainable Development 9, 100218. https://doi.org/ 10.1016/j.gsd.2019.100218
Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geographical Review 38, 55–94.
Tilahun, K. & Merkel, B.J., 2009. Estimation of groundwater recharge using a GIS-based distributed water balance model in Dire Dawa, Ethiopia. Hydrogeology Journal 17, 1443–1457. https://doi.org/10.1007/ s10040-009-0455-x.
Turc, L., 1954, Le bilan d’eau des sols: Relations entre les précipitations, l’évaporation et l’écoulement., Annales Agronomiques, 5, 491-595.
Van Der Kaars, S., Penny, D., Tibby, J., Fluin, J., Dam, R.A.C., & Suparan, P., 2001. Late Quaternary palaeoecology, palynology and palaeolimnology of a tropical lowland swamp: Rawa Danau, West-Java, Indonesia. Palaeogeography, Palaeo-climatology, Palaeoecology 171 (3-4), 185-212. https://doi.org/10.1016/S0031-0182(01)00245-0.
Vörösmarty, C.J., Green, P., Salisbury, J., & Lammers, R.B., 2000. Global water resources: Vulnerability from climate change and population growth. Science 289 (5477), 284-288. https://doi.org/10.1126/ science.289.5477.284.
Wagner, P.D., Kumar, S., & Schneider, K., 2013. An assessment of land use change impacts on the water resources of the Mula and Mutha Rivers catchment upstream of Pune, India. Hydrology and Earth System Sciences 17, 2233–2246. https://doi.org/ 10.5194/hess-17-2233-2013.
Wahyuningsih, S., Anwar, N., Edijatno, E., & Karnaningroem, N., 2010. A Comparative Study of Water Quality Characteristics at East Java River. IPTEK The Journal for Technology and Science 21(4). https://doi.org/10.12962/j20882033.v21i4.91.
Westenbroek, M.S., Kelson, V.A., Dripps, W.R., Hunt, R.J., & Bradbury, K.R., 2010. SWB − A Modified Thornthwaite-Mather Soil-Water- Balance Code for Estimating Groundwater Recharge. U.S. Geological Survey Techniques and Methods 6-A31, 60pp.
Xu, C.Y. & Chen, D., 2005. Comparison of seven models for estimation of evapotranspiration and groundwater recharge using lysimeter measurement data in Germany. Hydrological Processes 19(18), 3717 - 3734. https://doi.org/10.1002/hyp.5853.
Yeh, H.F., Lee, C.H., Chen, J.F., & Chen, W.P., 2007. Estimation of groundwater recharge using water balance model. Water Resources 34, 153 - 162. https://doi.org/ 10.1134/S009780780702005
Zhang, L., Dawes, W. R., & Walker, G. R., 1999. Predicting the Effect of Vegetation Changes on Catchment Average Water Balance. Technical Report. Cooperative Research Centre for Catchment Hydrology. https://ewater.org.au/archive/crcch/archive/pubs/pdfs/technical199912.pdf.
DOI: http://dx.doi.org/10.14203/risetgeotam2020.v30.1118
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Gumilar Utamas Nugraha, Priyo Hartanto, Hendra Bakti, Asep Mulyono
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS
Indexed by:
Plagiarism checker: