ANALISIS SPASI LUBANG BOR UNTUK MENGEVALUASI SUMBERDAYA TIMAH ALUVIAL DAN MINERAL IKUTANNYA DI PULAU BANGKA DENGAN GLOBAL ESTIMATION VARIANCE

Raymond Kosher Sianturi, Mohamad Nur Heriawan, Syafrizal Syafrizal

Abstract


Pulau Bangka merupakan daerah yang kaya akan mineralisasi timah yang dibawa oleh batuan granit. Selain kaya akan mineralisasi timah, ilmenite, rutile, anatase, zircon, monazite, dan xenotime juga hadir dalam batuan granit sebagai mineral aksesoris. Mineral-mineral ini juga terdapat dalam endapan sekunder timah aluvial dan disebut mineral ikutan timah (MIT). Optimasi spasi bor antara timah dan mineral ikutan timah dibutuhkan agar spasi tersebut dapat mewakili timah dan mineral ikutan timah. Metode yang digunakan pada penelitian ini adalah pendekatan geostatistik melalui metode Global Estimation Variance (GEV) untuk menghitung nilai relative error. Dari hasil penelitian didapatkan bahwa timah lebih homogen daripada mineral ikutan timah. Spasi optimum yang mewakili Sn (timah) dan mineral ikutan timah berdasarkan pada 8 (delapan) daerah di Pulau Bangka adalah 20 - 25 m untuk measured, 30 - 40 m untuk indicated, dan 40 - 50 m untuk inferred.

ABSTRACT – Drill Hole Spacing Analysis for Evaluation of Tin and Associated Minerals Resources in Bangka Island Using Global Estimation Variance. Bangka Island is an area rich in granite rocks bearing tin mineralization. Besides that, ilmenite, rutile, anatase, zircon, monazite, and xenotime are also present in granite as mineral accessories. These minerals are also present in alluvial tin deposits and called as tin associated minerals. Optimization of drill hole spacing between tin and its associated minerals is indispensable so that these spacing can represent the spatial distribution of tin and its associated minerals. Global Estimation Variance (GEV) is used to calculate the relative error. This study showed that tin is more homogeneous than its associated minerals. The optimum spacings representing Sn (tin) and its associated minerals based on the case studies of eight sites at Bangka Islandare20–25m,30–40m,and40–50mfor obtaining the measured, indicated, and inferred resources, respectively.


Keywords


alluvial tin, tin associated minerals, optimum spacing, geostatistics, global estimation variance

References


Battalgazy, N., & Madani, N., 2019. Categorization of Mineral Resources Based on Different Geostatistical Simulation Algorithms : A Case Study from an Iron Ore Deposit. Natural Resources Research. https://doi.org/10.1007/s11053-019-09474-9

Bern, C. R., Shah, A. K., Benzel, W. M., & Lowers, H. A., 2016. The distribution and composition of REE-bearing minerals in placers of the Atlantic and Gulf coastal plains, USA. Journal of Geochemical Exploration, 162, 50–61. https://doi.org/10.1016/j.gexplo.2015.12.011

Bertoli, O., Paul, A., Casley, Z., & Dunn, D., 2013. Geostatistical drill hole spacing analysis for coal resource classification in the Bowen Basin, Queensland. International Journal of Coal Geology, 112, 107–113. https://doi.org/10.1016/j.coal.2012.12.010

Cornah, A., Vann, J., & Driver, I., 2013. Comparison of three geostatistical approaches to quantify the impact of drill spacing on resource confidence for a coal seam (with a case example from Moranbah North, Queensland, Australia). International Journal of Coal Geology, 112, 114–124. https://doi.org/10.1016/j.coal.2012.11.006

Evans, A. M., 1993. Ore Geology and Industrial Minerals: An Introduction (Third Edit). Blackwell Publishing.

Geovariances, 2016. Drill Hole Spacing Analysis. Retrieved from https://www.geovariances.com/wp-content/uploads/2016/07/geovarianceswhitepaper-dhsa.pdf.

Gwenzi, W., Mangori, L., Danha, C., Chaukura, N., Dunjana, N., & Sanganyado, E., 2018. Sources, behavior, and environmental and human health risks of high- technology rare earth elements as emerging contaminants. Science of the Total Environment, 636, 299–313. https://doi.org/10.1016/j.scitotenv.2018.04.235

Heriawan, M. N., Pillayati, P., Widodo, L. E., & Widayat, A. H., 2020. Drill hole spacing optimization of non-stationary data for seam thickness and total sulfur : A case study of coal deposits at Balikpapan Formation, Kutai Basin, East Kalimantan. International Journal of Coal Geology, 223(March), 103466. https://doi.org/10.1016/j.coal.2020.103466

Isatelle, F., & Rivoirard, J., 2019. Mineral Resources classification of a nickel laterite deposit : Comparison between conditional simulations and specific areas. The Southern African Institute of Mining and Metallurgy, 119, 871–882.

Journel, A. G., & Huijbregts, C. J., 1978. Mining Geostatistic. Academic Press. USA.

Matheron, G., 1971. The Theory of Regionalized Variables and Its Applications. Ecole Nationale Superieure des Mines de Paris.

Ng, S. W., Whitehouse, M. J., Roselee, M. H., Teschner, C., Murtadha, S., Oliver, G. J. H., Ghani, A. A., & Chang, S.-C., 2017. Late Triassic granites from Bangka, Indonesia : A continuation of the Main Range granite province of the South-East Asian Tin Belt. Journal of Asian Earth Sciences, 138(March), 548–561. https://doi.org/10.1016/j.jseaes.2017.03.002

Perks, C., & Mudd, G., 2019. Titanium, zirconium resources, and production : A state of the art literature review. Ore Geology Reviews, 107, 629–646. https://doi.org/10.1016/j.oregeorev.2019.02.025

Purwadi, I., Werff, H. M. A. Van Der, & Lievens, C., 2020. Targeting rare earth element bearing mine tailings on Bangka Island, Indonesia, with Sentinel-2 MSI. Int J Appl Earth Obs Geoinformation, 88, 102055. https://doi.org/10.1016/j.jag.2020.102055

Schwartz, M. O., Rajah, S. S., Askury, A. K., Putthapiban, P., & Djaswadi, S., 1995. The Southeast Asian Tin Belt. Earth-Science Reviews, 38, 95–293.

Silva, D. S. F., & Boisvert, J. B., 2014. Mineral resource classification : a comparison of new and existing techniques. Journal of The Southern African Institute of Mining and Metallurgy, 114(March), 265–273.

Sinclair, A. J., & Blackwell, G. H., 2002. Applied Mineral Inventory Estimation. Cambridge University Press.

Syafrizal, Amertho, S. D., Azwardi, I., Indriati, T., Nabilla, A. O., Suharjo, E. G. W., & Hede, A. N. H., 2019a. Karakterisasi Mineral Ikutan Timah pada Endapan Primer, Sekunder, dan Tailing di Bangka Selatan dan Belitung. Prosiding TPT XXVIII PERHAPI 2019 (pp. 807–816).

Syafrizal, Pradana, A. S., Amertho, S. D., Azwardi, I., Heriawan, M. N., & Hede, A., 2019b. Studi Distribusi Mineral Ikutan Timah (MIT) untuk Mendukung Metoda Penanganan Sampel pada Kegiatan Eksplorasi. Prosiding TPT XXVIII PERHAPI 2019 STUDI (pp. 797–806).

Yu, S., & Wai, A. M., 2020. Upgrading of Titanium Dioxide from Ilmenite Concentrate. ETSJ, 02(02), 245–249.




DOI: http://dx.doi.org/10.14203/risetgeotam2020.v30.1115

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Raymond Kosher Sianturi, Mohamad Nur Heriawan, Syafrizal Syafrizal

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS

 

Indexed by:

        

 

Plagiarism checker: