PELINDIAN BIJIH NIKEL LATERIT KADAR RENDAH MENGGUNAKAN METODE ATMOSPHERIC ACID LEACHING DALAM MEDIA ASAM KLORIDA (HCL)
Abstract
Ekstraksi nikel laterit menggunakan metode hidrometalurgi lebih efisien dari segi konsumsi energi dengan lebih sedikit gas buang dibandingkan dengan metode pirometalurgi. Hal ini menyebabkan nikel laterit berkadar rendah dapat diekstraksi lebih banyak menggunakan metode hidrometalurgi. Salah satu metode hidrometalurgi dalam mengekstraksi nikel dari bijih nikel laterit adalah Atmospheric Acid Leaching. Penelitian ini bertujuan untuk memperoleh data persentase perolehan nikel, menentukan variabel yang paling berpengaruh dan menentukan kondisi optimum dalam proses pelindian. Pada penelitian ini dilakukan variasi pada faktor-faktor yang berpengaruh dalam proses leaching yakni temperatur, konsentrasi asam dan waktu pelindian. Analisis kandungan nikel hasil pelindian dilakukan menggunakan Atomic Adsorbtion Spectroscopy (AAS). Hasil penelitian menunjukkan bahwa persentase perolehan nikel terendah adalah 9,40% Ni dan tertinggi 75,76% Ni. Perhitungan ANOVA digunakan untuk menentukan faktor paling berpengaruh pada proses pelindian nikel laterit. Faktor yang paling berpengaruh dalam penelitian ini adalah temperatur (B), diikuti konsentrasi asam (A), waktu pelindian (C), interaksi konsentrasi-temperatur (AB), interaksi temperatur-waktu (BC), interaksi konsentrasi-waktu (AC) dan interaksi konsentrasi-temperatur-waktu (ABC). Kondisi optimum pelindian diperoleh pada kondisi temperatur 75°C, konsentrasi asam 2,9-3 Molar dalam waktu 69-70 menit dengan perolehan nikel >70%.
ABSTRACT - Leaching of Low-Grade Nickel Laterite Ore Using Atmospheric Acid Leaching Method in Hydrochloric Acid. Nickel laterite extraction using the hydrometallurgical method is more efficient in energy consumption with less exhaust gas than the pyrometallurgical method. This method causes the extraction of low-grade nickel laterite ore using hydrometallurgy could be more effective. One of the hydrometallurgical methods to extract nickel from its ore is atmospheric acid leaching. This research aims to determine the percentage of nickel recovery through the leaching process, determine the most influenced leaching factor, and determine the optimum leaching condition. The main factors that influence the leaching process are temperature, acid concentration, and leaching time. Atomic adsorption spectroscopy was chosen to analyze the leaching solution. This research showed that the lowest recovery of nickel leaching was 9,40% of Ni, and the highest was 75,76% of Ni. Analysis of variance (ANOVA) was used to determine the most influenced factor of leaching. The most influenced factor was the temperature (B), followed by acid concentration (A), duration (C), the interaction of acid concentration-temperature (AB), the interaction of temperature-duration (BC), the interaction of acid concentration-duration (AC), and interaction of acid concentration-temperature-duration (ABC). The optimum leaching condition is at 75°C of temperature, 2,9-3 molar of acid concentration, in 69-70 minutes of duration, which has >70% of Ni recovery.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Aras, A., & Ağaçayak, T., 2017. Optimization of nickel extraction from lateritic ore in hydrochloric acid solution with hydrogen peroxide by Taguchi method. Journal of Engineering Science and Technology, 5(3), 341–352.
Astuti, W., Hirajima, T., Sasaki, K., & Okibe, N., 2016. Comparison of effectiveness of citric acid and other acids in leaching of low-grade Indonesian saprolitic ores. Minerals Engineering, 85, 1–16. https://doi.org/10.1016/j.mineng.2015.10.001
Das, G. K., & de Lange, J. A. B., 2011. Reductive atmospheric acid leaching of West Australian smectitic nickel laterite in the presence of sulphur dioxide and copper (II). Hydrometallurgy, 105(3), 264–269. https://doi.org/10.1016/j.hydromet.2010.10.016
Lakshmanan, V. I., Sridhar, R., Chen, J., & Halim, M. A., 2016. Development of Mixed-Chloride Hydrometallurgical Processes for the Recovery of Value Metals from Various Resources. Transactions of the Indian Institute of Metals, 69(1), 39–50. https://doi.org/10.1007/s12666-015-0626-5
Li, G., Rao, M., Li, Q., Peng, Z., & Jiang, T., 2010. Extraction of cobalt from laterite ores by citric acid in presence of ammonium bifluoride. Transaction of Nonferrous Metals Society of China, 8(12), 1517–1520. https://doi.org/10.1016/S1003-6326(09)60331-9
Li, J., Li, D., Xu, Z., Liao, C., Liu, Y., & Zhong, B., 2018. Selective leaching of valuable metals from laterite nickel ore with ammonium chloride-hydrochloric acid solution. Journal of Cleaner Production, 179, 24–30. https://doi.org/10.1016/j.jclepro.2018.01.085
Li, J., Li, X., Hu, Q., Wang, Z., Zhou, Y., Zheng, J., Liu, W., & Li, L., 2009. Effect of pre-roasting on leaching of laterite. Hydrometallurgy, 99(1), 84–88. https://doi.org/10.1016/j.hydromet.2009.07.006
Li, J., Xiong, D., Chen, H., Wang, R., & Liang, Y., 2012. Physicochemical factors affecting leaching of laterite ore in hydrochloric acid. Hydrometallurgy, 129–130, 14–18. https://doi.org/10.1016/j.hydromet.2012.08.001
Listyarini, S., 2017. Designing Heap Leaching for Nickel Production that Environmentally and Economically Sustain. 8(12), 799–803. https://doi.org/10.18178/ijesd.2017.8.12.1060
Luo, J., Li, G., Rao, M., Peng, Z., Zhang, Y., & Jiang, T., 2015. Atmospheric leaching characteristics of nickel and iron in limonitic laterite with sulfuric acid in the presence of sodium sulfite. Minerals Engineering, 78, 38–44. https://doi.org/10.1016/j.mineng.2015.03.030
MacCarthy, J., Nosrati, A., Skinner, W., & Addai-Mensah, J., 2016. Atmospheric acid leaching mechanisms and kinetics and rheological studies of a low-grade saprolitic nickel laterite ore. Hydrometallurgy, 160, 26–37. https://doi.org/10.1016/j.hydromet.2015.11.004
Marrero, J., Coto, O., Goldmann, S., Graupner, T., & Schippers, A., 2015. Recovery of Nickel and Cobalt from Laterite Tailings by Reductive Dissolution under Aerobic Conditions Using Acidithiobacillus Species. Environmental Science & Technology, 49(11), 6674–6682. https://doi.org/10.1021/acs.est.5b00944
McDonald, R. G., & Whittington, B. I., 2008a. Atmospheric acid leaching of nickel laterites review: Part I. Sulphuric acid technologies. Hydrometallurgy, 91(1), 35–55. https://doi.org/10.1016/j.hydromet.2007.11.009
McDonald, R. G., & Whittington, B. I., 2008b. Atmospheric acid leaching of nickel laterites review. Part II. Chloride and bio-technologies. Hydrometallurgy, 91(1), 56–69. https://doi.org/10.1016/j.hydromet.2007.11.010
Miazga, B., & Mulak, W., 2008. Leaching of nickel from spent catalysts in hydrochloric acid solutions. Physicochemical Problems of Mineral Processing, 42(1), 177–184.
Rao, M., Li, G., Jiang, T., Luo, J., Zhang, Y., & Fan, X., 2013. Carbothermic Reduction of Nickeliferous Laterite Ores for Nickel Pig Iron Production in China: A Review. JOM, 65(11), 1573–1583. https://doi.org/10.1007/s11837-013-0760-7
Rice, N. M., 2016. A hydrochloric acid process for nickeliferous laterites. Minerals Engineering, 88, 28–52. https://doi.org/10.1016/j.mineng.2015.09.017
Solihin, Mubarok, M. Z., Hapid, A., & Firdiyono, F., 2014. Pelindian bijih nikel laterit sulawesi tenggara dalam media asam sulfat. Prosiding Pemaparan Hasil-hasil Penelitian Pusat Penelitian Geoteknologi LIPI 2014, 527 - 534.
Solihin, S., & Firdiyono, F., 2018. Perilaku pelarutan logam nikel dan besi dari bijih nikel kadar rendah Sulawesi Tenggara. Metalurgi, 29(2), 139–144. https://doi.org/10.14203/metalurgi.v29i2.285
Tong, L., Klein, B., Zanin, M., Quast, K., Skinner, W., Addai-Mensah, J., & Robinson, D., 2013. Stirred milling kinetics of siliceous goethitic nickel laterite for selective comminution. Minerals Engineering, 49, 109–115. https://doi.org/10.1016/j.mineng.2013.05.013
Wang, X., 2013. An investigation of the relationship between Western Australian nickel laterites’ leaching performance and their mineralogical properties [Thesis, Curtin University]. https://espace.curtin.edu.au/handle/20.500.11937/2395
Zhang, P., Guo, Q., Wei, G., Meng, L., Han, L., Qu, J., & Qi, T., 2015. Extraction of metals from saprolitic laterite ore through pressure hydrochloric-acid selective leaching. Hydrometallurgy, 157, 149–158. https://doi.org/10.1016/j.hydromet.2015.08.007
DOI: http://dx.doi.org/10.14203/risetgeotam2020.v30.1097
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Dian Permana, Rizky Kumalasari, Wahab Wahab, Musnajam Musnajam
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS
Indexed by:
Plagiarism checker: