IMAGING TREE ROOT ZONE GEOMETRY USING ELECTRICAL RESISTIVITY TOMOGRAPHY
Abstract
Root zone geometry research is usually done in a conventional way which is destructive, time-consuming, and requires a considerable cost. Several non-destructive measurements used geophysical methods have been developed, one of which is the Electrical Resistivity Tomography (ERT) method. Tree root zone determination using ERT has been carried out in Kiara Payung area, Sumedang, West Java, with Maesopsis eminii tree as the object study. A total of 29 ERT lines were measured using dipoledipole configuration with electrodes spacing of 50 cm. The results of two-dimensional (2D) and three-dimensional (3D) inversion modeling show that the ERT method has been successfully imaging the tree root zone. The root zone is characterized as 100-700 Ωm with an elliptical shape geometry of the root plate. The root radius is estimated to be 4-5 m from the stem, the root zone diameter reaches 8-9 m at the shallow soil surface and the root zone depth is approximately 2-2.5 m.
ABSTRAK Pencitraan geometri zona perakaran pohon menggunakan electrical resistivity tomography.
Penelitian geometri zona perakaran biasa dilakukan dengan cara konvensional yang destruktif, memakan waktu, dan membutuhkan biaya yang tidak sedikit. Beberapa pengukuran non-destruktif menggunakan metode geofisika telah dikembangkan, salah satunya adalah metode Electrical Resistivity Tomography (ERT). Penentuan zona perakaran pohon menggunakan metode ERT telah dilakukan di daerah Kiara Payung, Sumedang, Jawa Barat, dengan pohon Maesopsis eminii sebagai objek studi. Sebanyak 29 lintasan ERT diukur menggunakan konfigurasi dipole-dipole pada dengan jarak antar elektroda 50 cm. Hasil pemodelan inversi dua dimensi (2D) dan tiga dimensi (3D) menunjukkan bahwa metode ERT telah berhasil mencitrakan zona perakaran pohon. Zona perakaran teridentifikasi berada pada nilai resistivitas 100-700 Ωm dengan root plate dan root cross-sections berbentuk elips. Radius akar diperkirakan sejauh 4-5 m dari pangkal batang, sedangkan diameter zona perakaran mencapai sekitar 8-9 m di permukaan tanah dangkal dan kedalaman zona perakaran diperkirakan antara ~2-2.5 m.
Keywords
Full Text:
PDFReferences
Abernethy, B., Rutherfurd, I.D., 2001. The distribution and strength of riparian tree roots in relation to riverbank reinforcement. Hydrological processes 15, 63–79.
Ain-Lhout, F., Boutaleb, S., Diaz-Barradas, M.C., Jauregui, J., Zunzunegui, M., 2016. Monitoring the evolution of soil moisture in root zone system of Argania spinosa using electrical resistivity imaging. Agricultural Water Management 164, 158–166. https://doi.org/10.1016/j.agwat.2015.08.007
Al Hagrey and Petersen, 2011. Numerical and experimental mapping of small root zones using optimized surface and borehole resistivity tomography. Geophysics 76, G25–G35. https://doi.org/10.1190/1.3249778
Al Hagrey, S.A., 2007. Geophysical imaging of root-zone, trunk, and moisture heterogeneity. Journal of Experimental Botany 58, 839–854. https://doi.org/10.1093/jxb/erl237
Alzwar, M., Akbar, N., A., Bachri, S., 1992. Geological Map of Garut and Pameungpeuk Sheet, West Java, scale 1:100.000. Bandung.
Amato, M., Basso, B., Celano, G., Bitella, G., Morelli, G., Rossi, R., 2008. In situ detection of tree root distribution and biomass by multi- electrode resistivity imaging. Tree Physiology 28, 1441–1448.
Bischetti, G.B., Chiaradia, E.A., Simonato, T., Speziali, B., Vitali, B., Vullo, P., Zocco, A., 2007. Root strength and root area ratio of forest species in Lombardy (Northern Italy), in: Eco-and Ground Bio-Engineering: The Use of Vegetation to Improve Slope Stability. Springer, pp. 31–41.
Box, J.E., 1996. Modern Methods for Root Investigations. Plant roots: the hidden half. Ed. Waisel, Y, Eshel, A and Kafkafi, U 193–237.
Bramasto, Y., Nurhasybi, Danu, Syamsuwida, D., Zanzibar, M., Pujiastuti, Mokodompit, S., 2015. Trees of the city. Balai Penelitian Teknologi Perbenihan Tanaman Hutan, Bogor.
Coder, K.D., 2018. Root strength & tree anchorage. University of Georgia, Warnell School of Forestry & Natural Resources outreach publication WSFNR-18-37.
Corwin, D.L., Lesch, S.M., 2005. Apparent soil electrical conductivity measurements in agriculture. Computers and electronics in agriculture 46, 11–43.
Dupuy, L., Fourcaud, T., Stokes, A., 2007. A numerical investigation into the influence of soil type and root architecture on tree anchorage, in: Eco-and Ground Bio-Engineering: The Use of Vegetation to Improve Slope Stability. Springer, pp. 175–189.
Epila, J., Verbeeck, H., Otim‐Epila, T., Okullo, P., Kearsley, E., Steppe, K., 2017. The ecology of Maesopsis eminii Engl. in tropical Africa. African journal of ecology 55, 679–692.
Fitter, A., 2002. Characteristics and functions of root systems, in: Plant Roots. CRC Press, pp. 49–78.
Hinsinger, P., Bengough, A.G., Vetterlein, D., Young, I.M., 2009. Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant and soil 321, 117–152.
Hruska, J., Čermák, J., Šustek, S., 1999. Mapping tree root systems with ground-penetrating radar. Tree physiology 19, 125–130.
Hultine, K.R., Cable, W.L., Burgess, S.S.O., Williams, D.G., 2003. Hydraulic redistribution by deep roots of a Chihuahuan Desert phreatophyte. Tree Physiology 23, 353–360.
Johnson, M.G., Tingey, D.T., Phillips, D.L., Storm, M.J., 2001. Advancing fine root research with minirhizotrons. Environmental and Experimental Botany 45, 263–289.
Lazarovitch, N., Vanderborght, J., Jin, Y., van Genuchten, M.T., 2018. The Root Zone: Soil Physics and Beyond. Vadose Zone Journal 17.
Leucci, G., 2010. The use of three geophysical methods for 3D images of total root volume of soil in urban environments. Exploration Geophysics 41, 268–278.
McNear Jr, D.H., 2013. The rhizosphere-roots, soil and everything in between. Nature Education Knowledge 4, 1.
Michot, D., Benderitter, Y., Dorigny, A., Nicoullaud, B., King, D., Tabbagh, A., 2003a. Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resources Research 39, 1–20. https://doi.org/10.1029/2002WR001581
Michot, D., Benderitter, Y., Dorigny, A., Nicoullaud, B., King, D., Tabbagh, A., 2003b. Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resources Research 39.
Morelli, G., Zenone, T., Teobaldelli, M., Fischanger, F., Matteucci, M., Seufert, G., 2007. Use of ground-penetrating radar (GPR) and electrical resistivity tomography (ERT) to study tree roots volume in pine forest and poplar plantation. Napier, New Zealand 21, 1–4.
Pawlik, Ł., Kasprzak, M., 2018. Regolith properties under trees and the biomechanical effects caused by tree root systems as recognized by electrical resistivity tomography (ERT). Geomorphology 300, 1–12.
Peltola, H.M., 2006. Mechanical stability of trees under static loads. American journal of botany 93, 1501–1511.
Pierret, A., Capowiez, Y., Moran, C.J., Kretzschmar, A., 1999. X-ray computed tomography to quantify tree rooting spatial distributions. Geoderma 90, 307–326.
Prieto, I., Armas, C., Pugnaire, F.I., 2012. Water release through plant roots: new insights into its consequences at the plant and ecosystem level. New Phytologist 193, 830–841.
Raats, P.A.C., 2007. Uptake of water from soils by plant roots. Transport in porous media 68, 5–28.
Roering, J.J., Schmidt, K.M., Stock, J.D., Dietrich, W.E., Montgomery, D.R., 2003. Shallow landsliding, root reinforcement, and the spatial distribution of trees in the Oregon Coast Range. Canadian Geotechnical Journal 40, 237–253.
Schmidt, S., Bengough, A.G., Gregory, P.J., Grinev, D. V, Otten, W., 2012. Estimating root–soil contact from 3D X‐ray microtomographs. European Journal of Soil Science 63, 776–786.
Soil and Agroclimate Research Center, 1993. Soil Map of Citarum Watershed, West Java, Scale 1:100.000. Bogor.
Soil Survey Staff, 2014. Keys to Soil Taxonomy, Soil Conservation Service. United States Department Of Agriculture; Washington.
Stover, D.B., Day, F.P., Butnor, J.R., Drake, B.G., 2007. Effect of elevated CO2 on coarse‐root biomass in Florida scrub detected by ground‐penetrating radar. Ecology 88, 1328–1334.
Tobin, B., Čermák, J., Chiatante, D., Danjon, F., Di Iorio, A., Dupuy, L., Eshel, A., Jourdan, C., Kalliokoski, T., Laiho, R., 2007. Towards developmental modelling of tree root systems. Plant Biosystems 141, 481–501.
Tosi, M., 2007. Root tensile strength relationships and their slope stability implications of three shrub species in the Northern Apennines (Italy). Geomorphology 87, 268–283.
Weihs, U., Dubbel, V., Krummheuer, F., Just, A., 1999. The electrical resistivity tomography-A promising technique for the detection of colored heart wood on standing beech trees. Forst und Holz (Germany).
Zenone, T., Morelli, G., Teobaldelli, M., Fischanger, F., Matteucci, M., Sordini, M., Armani, A., Ferrè, C., Chiti, T., Seufert, G., 2008. Preliminary use of ground-penetrating radar and electrical resistivity tomography to study tree roots in pine forests and poplar plantations. Functional Plant Biology 35, 1047–1058.
DOI: http://dx.doi.org/10.14203/risetgeotam2020.v30.1074
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Asep Mulyono, Ilham Arisbaya, Yayat Sudrajat
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS
Indexed by:
Plagiarism checker: