Microzonation of Soil Amplification Based on Microtremor, Spt and Cptu Data in Bandung Basin
Abstract
Bandung Basin consists of Sunda-Tangkuban Perahu volcanic deposit that is made of lake sediment and an alluvial fan with fine to coarse-grained materials such as clay, silt and sand. The area is surrounded by several earthquake sources such as the Lembang, Cimandiri, and Baribis Faults. Therefore, it is important to understand soil dynamic problems with respect to seismic sources and soil properties. This research aims to investigate velocity amplification of the Bandung Basin using microtremor measurements and site classification based on the Standard Penetration Test (SPT) and Cone Penetrometer Test (CPTu). Velocity amplification was analyzed using the horizonal to vertical H/V spectral ratio, and site classification was determined using and values. Microzonation maps were developed using Geographical Information System (GIS) to determine the correlation between soil velocity amplification and site class. The results revealed that velocity amplification levels in the Bandung Basin vary with a range of 1.3 to 26.5. Site classification ranges from very dense soil and hard rock (class C), stiff soil (class D) to soft clay soil (class E). Site class E dominates the southeast part of the Bandung Basin with a high value of soil amplification. This scientific information is critical for further spatial planning focusing on infrastructure and residential building.
Cekungan Bandung berasal dari endapan vulkanik Sunda-Tangkuban Perahu yang terdiri dari sedimen danau dan kipas aluvial dengan material berbutir halus hingga kasar seperti lempung, lanau, dan pasir. Daerah ini juga dikelilingi oleh beberapa sumber gempa yakni sesar Lembang, Cimandiri, dan Baribis. Oleh karena itu masalah dinamika tanah yang dipengaruhi oleh sumber seismik dan sifat tanah perlu menjadi perhatian. Tujuan penelitian ini adalah untuk mengetahui amplifikasi kecepatan tanah di wilayah cekungan Bandung dengan menggunakan alat mikrotremor dan metode site classification berdasarkan uji SPT dan CPTu. Amplifikasi kecepatan dianalisis menggunakan perbandingan rasio spektral H/V dan site classification yang diperoleh dengan menggunakan nilai dan . Peta mikrozonasi disusun menggunakan teknik Sistem Informasi Geografis (SIG) untuk menentukan korelasi amplifikasi tanah dan site class tanah. Hasil penelitian menunjukkan bahwa tingkat amplifikasi kecepatan di Cekungan Bandung bervariasi, berkisar 1,3 hingga 26,5. Site classification berkisar dari tanah yang sangat padat dan batuan keras (kelas C), tanah kaku (kelas D) hingga tanah lempung lunak (kelas E). Hasil penelitian menunjukkan site class E mendominasi bagian selatan Cekungan Bandung dengan nilai amplifikasi tanah yang tinggi. Informasi ilmiah ini diperlukan untuk perencanaan tata ruang kedepannya, dengan fokus pada infrastruktur dan bangunan tempat tinggal.
Keywords
Full Text:
PDFReferences
Abidin, H. Z., Andreas, H., Kato, T., Ito, T., Meilano, I., Kimata, F., Natawidjaja,, D. H., Harjono, H., 2009. Crustal Deformation Studies In Java (Indonesia) using GPS. Journal of Earthquake and Tsunamis, 3(2), 77-88.
Aki, K., 1957. Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull.
Earthquake Res. Inst. University of Tokyo Earthquake Research Institute. ISSN: 00408972, 35(3), 415–457.
ASCE. 2010. ASCE 7-10. Minimum Design Loads for Buildings and Other Structures. Virginia: American Society of Civil Engineers. ISBN 978-0-7844-1115-5. USA.
Alzwar, M., Akbar, N., and Bachri, S., 1992. Peta Geologi Lembar Garut dan Pameungpeuk, Jawa Barat, Skala 1:100.000. Pusat Penelitian dan Pengembangan Geologi Bandung.
Badan Pusat Statistik Provinsi Jawa Barat. 2015. Jumlah Penduduk dan Jenis Kelamin Menurut Kabupaten/Kota di Provinsi Jawa Barat, 2015. https://jabar.bps.go. id/.
Bardet, J. P., Ichii, K., and Lin, C. H., 2000. A Computer Program for Euqivalent-linear Earthquake site Response Analyses of Layered Soil Deposits. Manual Program. University of Southern California. Department of Civil Engineering.
Bardet, J. P., and Tobita, T., 2001. A Computer Program for Nonlinear Earthquake site Response Analyses of Layered Soil Deposits. Manual Program. University of Southern California. Department of Civil Engineering.
Borges, J. F., Silva, H. G., Torres, R. J. G., Caldeira, B., Bezzeghoud, M., Furtado, J. A., and Carvalho, J., 2016.
Inversion of ambient seismic noise HVSR to evaluate velocity and structural models of the Lower Tagus Basin, Portugal. Journal of Seismology, 20(3), 875-887.
Cipta, A., Cummins, P., Dettmer, J., Saygin, E., Irsyam, M., Rudyanto, A., and Murjaya, J., 2018. Seismic velocity structure of the Jakarta Basin, Indonesia, using trans-dimensional Bayesian inversion of horizontal-to-vertical spectral ratios. Geophysical Journal International (Vol. 215). https://doi.org/10.1093/gji/ggy289
Dam, M. A. C., 1994. The Late Quaternary Evolution of the Bandung Basin, West-Java, Indonesia, Thesis Vrije Universiteit, Amsterdam, 252.
Dam, M. A. C., Suparan, P., Nossin, J. J., Voskuil, R. P. G. A., and Group, G. T. L. 1996. Chronology For Geomorphological Developments In The Greater Bandung Area, West-Java, Indonesia. Journal of Southeast Asian Earth Sciences, 14, 101-115.
Data DIBI BNPB. 2018. http://bnpb.cloud/dibi/ xdibi_list.
Data BMKG 2017-2018. https://inatews.bmkg. go.id/new/query_gempa_isu.php.
Gumilar, I., 2013. Pemetaan Karakteristik Penurunan Muka Tanah (land Subsidence) Berdasarkan Integrase Metode GPS dan Insar serta Estimasi Kerugian Keekonomian Akibat Dampak Penurunan Muka Tanah (Wilayah Studi : Cekungan Bandung), Desertasi, ITB.
Hata, Y., Susumu, N., Atshusi, N., Susumu, S., Yohei, M., and Koji, I., 2010. Microtremor H/V Spectrum Ratio and Site Amplification Factor in the Seismic Observation Stations for 2008 Iwate-Miyagi Nairiku Earthquake. Bull of Graduate School of Engineering Hiroshima University, 59(10).
Hutasoit, L. M., 2009. Kondisi Muka Airtanah Dengan dan Tanpa Peresapan Buatan Daerah Bandung: Hasil Simulasi Numerik. Jurnal Geologi Indonesia, 4(3), 177-188.
Iwan W. D., 1967. On A Class Of Models For The Yielding Behaviour Of Continues and Composite System. J. App. Mech., 34, 612-617.
Kanai, K., 1957. Semi-empirical formula for the seismic characteristics of the ground. Bull. of the ERI. 35, 309–325.
Koesoemadinata, R. P., and Hartono, D., 1981. Stratigrafi dan Sedimentasi Daerah Bandung. Proceedings PIT X Ikatan Ahli Geologi Indonesia, Bandung, 318-336.
Lu, L., Yamazaki, F., and Katayama, T., 1992. Soil Amplification Based On Seismometer Array And Microtremor Observations In Chiba, Japan. Earthquake Engineering And Structural Dynamics, 21(955108),1592.
Massa, M., and S, Lovati., 2012. Seismic amplification in presence of topography and their consequences for ground motion predictions and seismic code for building: the case of Italy. 15th World Conference on Earthquake Engineering, Lisbon Potugal.
Meilano, I., Abidin, H. Z., Andreas, H., Gumelar, I., Sarsito, E., Hanifa, N. R., Rino., Harjono, H., Kato, T., Kimata, F., Fukuda, Y., 2012. Slip Rate Estimation of the Lembang Fault West Java from Geodetic Observation. Journal of Disaster Research., 7(1), 12-18.
Mroz, Z., 1967. On The Description Of Anisotropic Work Hardening. J. Mech. Phys. Solids, 15, 163-175.
Nakamura, Y., 1989. A Method for Dynamic Characteristics Estimation Of Subsurface Using Microtremor on the Ground Surface. Quarterly Reports of the Railway Technical Research Institute, Tokyo, 30, 25-33.
Nakamura, Y., 2000. Clear Identification Of Fundamental Idea Of Nakamura’s Technique And Its Applications. Proc XII World Conf. Earthquake Engineering, 8.
Nakamura, Y., 2008. On The H/V Spectrum. The 14th World Conference on Earthquake Engineering. Beijing, China.
Nogoshi, M., and Igarashi, T., 1971. On The Amplitude Characteristics Of Microtremor (Part 2). Jour. seism. Soc. Japan, 24, 26-40.
Paudya, Y. R., Yatabe, R., Bhandary, N. R., and Dahal, R. K., 2012. A study of local amplification effect of soil layers on ground motion in the Kathmandu Valley using microtremor analysis. arthq Eng & Eng Vib Journal, 11, 257-268.
Pusat Studi Gempa Nasional, 2017. Peta Sumber dan Bahaya Gempa Indonesia tahun 2017, Pusat Litbang Perumahan dan Permukiman, Badan Penelitian dan Pengembangan, Kementerian Pekerjaaan Umum dan Perumahan Rakyat.ISBN 978-602-5489-01-3.376.
Raju, U. M., Boominathan, A., and Dodagoudar, G. R., 2010. Use of Surface Waves in Statistical Correlations of Shear Wave Velocity and Penetration Resistance of Chennai Soils. Geotech Geol Eng, 28, 119–137.
Robertson, P. K., 2009. Interpretation of Cone Penetration Tests, a Unified Approach. Canadian Geotechnical Journal, 46 (11), 1337–1355.
Seekins, L. C., Wennerberg, L., Margheriti, L., and Liu, H. P., 1996. Site Amplification at Five Locations in San Francisco, California: A Comparison of S Waves, Codas, and Microtremors. Bulletin of the Seismological Society of America, 86(3), 627-635.
Setydji, B., Murata, I., Kahar, J., Suparka, S., and Tanaka, T., 1997. Analysis of GPS measurementin West-Java, Indonesia. Ann. Disas. Prev. Res. Inst. Kyoto Univ., 40(B-1), 27-33.
Silitonga, P. H., 1973. Peta Geologi Lembar Bandung Skala 1 : 100.000. Pusat Penelitian dan Pengembangan Geologi, Bandung.
Sudjatmiko. 1972. Peta Geologi Lembar Cianjur, Jawa Skala 1 : 100.000. Pusat Penelitian dan Pengembangan Geologi, Bandung.
Tohari, A., Sari, A. M., and Syahbana, A. J., 2016. Ketebalan Lapisan Tanah Lunak Di Wilayah Cekungan Bandung Berdasarkan Metode Mikrotremor. Prosiding Geoteknologi LIPI. 84-93.
Tuladhar, R., Yamazaki, F., Warnitchai, P., and Saita, J., 2004. Seismic Microzonation Of The Greater Bangkok Area Using Microtremor Observations. Earthquake Engng Struct. Dyn, 33, 211–225.
DOI: http://dx.doi.org/10.14203/risetgeotam2019.v29.978
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Anggun Mayang Sari, Eko Soebowo, Afnindar Fakhrurrozi, Arifan Jaya Syahbana, Adrin Tohari
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS
Indexed by:
Plagiarism checker: