Kontribusi Sumber Aliran pada Pembentukan Air Limpasan dari Lelehan dan Hujan Salju di Cekungan Hulu Kawakami, Jepang Tengah

Kasdi Subagyono

Abstract


ABSTRAK Penetapan sumber air yang berkontribusi dalam proses air larian sangat penting untuk mengkarakterisasi proses hidrologi di daerah beriklim sedang. Penelitian dilakukan terhadap pelelehan salju tanggal 28 Maret 2001 dan hujan pada salju tanggal 29 Maret 2001 di Kebun Penelitian Kawakami, Provinsi Nagano, Jepang bagian Tengah. Pengukuran parameter hidrometrik dan hidrokimia serta Analisis Percampuran Sumber Air (EMMA) menggunakan Ca2+ dan SO42-dilaksanakan untuk menentukan sifat dinamis dari jalur aliran air dan untuk menganalisis sumber air yang berkontribusi terhadap proses larian. Tiga sumber air yang meliputi air bumi dangkal di zona Riparian, air tanah di zona pelerengan, dan air bumi dalam di zona Riparian teridentifikasi sebagai sumber air utama dalam menentukan proses larian di DAS hulu berhutan wilayah Kawakami, masing-masing 55%, 23% dan 22% serta 73%, 12%, dan 15%. Analisis hidrometrik menunjukkan bahwa air larian bawah permukaan selama kejadian pelelehan salju dan hujan pada salju didominasi oleh aliran air bawah permukaan khususnya pada zona Riparian. Hal ini merupakan alasan mengapa air bumi dangkal di zona Riparian memiliki kontribusi terbesar pada kejadian larian. Puncak larian pada 28 Maret 2001 diidentifikasi saat pelelehan salju terjadi pada pukul 14.00 yang berkorelasi dengan suhu tertinggi. Sementara itu puncak larian pada kejadian hujan pada salju terjadi pukul 16.00 dimana jumlah hujan merupakan faktor penentu kejadian larian tersebut.

Keywords


sumber air, analisis percampuran sumber air (EMMA), air larian, pelelehan salju, hujan pada salju, DAS hulu berhutan.

Full Text:

PDF

References


Baven, K. L. and Kirkby, M. J. 1979., A physical based variable contributing area model of basin hydrology. Hydrol.Sci. Bull., 24, 43-69.

Bazemore D. E., Eshelman, K. N. and Hollenbeck, K. J. 1994., The role of soil water in stormflow generation in a forested headwater catchment: synthesis of natural tracer and hydrometric evidence. J. Hydrol., 162, 47-75.

Burns, D. A., McDonnell, J. J., Hooper, R. P., Peters, N. E., Freer, J. E., Kendall, C. and Beven, K. ,2001. Quantifying contributions to storm runoff through end-member mixing analysis and hydrologic measurements at the Panola Mountain Research Watershed (Georgia, USA). Hydrol. Process., 15, 1903-1924.

Christophersen, N., Neal, C., Hooper, R.P., Vogt, R. D. and Andersen, S., 1990. Modelling streamwater chemistry as a mixture of soilwater end-members-A step towards second-generation acidification models. J. Hydrol., 116, 307-320.

Christophersen, N. and Hooper, R. P., 1992. Multivariate analysis of stream water chemical data: The use of principal components analysis for the end-member mixing problem. Water Resour. Res., 28, 99-107.

DeWalle, D. R. and Pionke, H. B., 1994. Stream generation on a small agricultural catchment during autumn recharge, II, Stormflow periods. J. Hydrol., 163, 23-42.

Dingman, S. L., 1994. Physical Hydrology. Prentice Hall. New Jersey, 575p.

Evans, C., Davies, T. D. and Murdoch, P. S., 1999. Component flow processes at four streams in the Catskill Mountains, New York, analysed using episodic concen-tration/discharge relationships. Hydrol. Process., 13, 563-575.

Hamada, Y., Tanaka, T. and Kasdi Subagyono., 2001. Effect of the formation of frozen layer on the pattern and chemistry of snowmelt discharge in a forested headwater basin: Preconsideration.

Proceeding of the Japan Society of hydrology and water resources. pp. 56-57 (in Japanese).

Hangen, E., Lindenlaub, M., Leibundgut, Ch. and von Wilpert, K., 2001. Investigating mechanisms of stormflow generation by natural tracers and hydrometric data: a small catchment study in the Black Forest, Germany. Hydrol. Process., 15, 183-199.

Hinton, M. J., Schiff, S. L. and English, M. C., 1994. Examining the contributions of glacial till water to storm runoff using two- and three component hydrograph separation. Water Resour. Res., 30, 983-993.

Hooper, R. P., Christophersen, N. and Peters, N. E. ,1990. Modelling streamwater chemistry as a mixture of soil water end-members-An application to the Panola Mountain Catchment, Georgia, U.S.A. J. Hydrol., 116, 321-343.

Katsuyama, M., Ohte, N. and Kobashi, S., 2001. A three-component end-member analysis of streamwater hydrochemistry in a small Japanese forested headwater catchment. Hydrol. Process.,15, 249-260.

Kawachi, S., 1977. Geology of the Yatsugatake District. Regional Geological Report. Geological Survey of Japan, 89-91 (in Japanese with English abstract)

Matsutani, J., Tanaka, T. and Tsujimura, M., 1993. Residence times of soil, ground, and discharge waters in a mountaineous headwater basin, central Japan, traced by tritium. In Peters, N. E., Hoehn, E., Liebundgut, Ch., Tase, N. and Walling, D.E. (eds). Tracers in Hydrology. IAHS Publ. No. 215, 57-63.

McGlynn, B. L., McDonnell, J. J., Shanley, J. B. and Kendall, C., 1999. Riparian zone flowpath dynamics during snowmelt in a small headwater catchment. J. Hydrol., 222, 75-92.

Mulholland, P. J., Wilson, G. V. and Jardine, P. M., 1990. Hydrogeochemical response of a forested watershed to storms: Effect of preferential flow along shallow and deep pathways. Water Resour. Res., 26, 3021-3036.

Mulholland, P. J., 1993. Hydrometric and stream chemistry evidence of three storm flowpaths in Walker Branch Watershed. J. Hydrol., 151, 291-316.

O’Loughlin, E. M., 1986. Prediction of subsurface saturation zones in natural catchments by topographic analysis. Water Resour. Res.,7, 425-448.

Scanlon, T. M., Raffensperger, J. P. and Hornberger, G. M., 2001. Modelling transport of dissolved silica in a forested headwater catchment: Implications for defining the hydrochemical response of observed flow pathways. Water Resour. Res., 37, 1071-1082.

Subagyono, K., Tanaka, T., Hamada, Y. and Tsujimura, M., 2005. Defining Hydro-chemical Evolution of stream flow through flowpath dynamic in Kawakami Headwater Catchmnet, Central Japan.

Hydrological Process, Vol. 19 No. 10 , 1939-1965.

Sueker, J. K., Joseph, N. R., Kendal, C. and Jarrett, R. D., 2000. Determination of hydrologic pathways during snowmelt for alpine/subalpine basins, Rocky Mountain National park, Colorado. Water Resour. Res., 36, 63-75.

Tsukamoto, Y. and Ohta, T., 1988. Runoff process on a steep forested slope. J. Hydrol., 102, 165-178.

Westertsrom, G. and Singh, V. P., 2000. An investigation of snowmelt runoff on experimental plots in Lulea, Sweden. Hydrol. Process., 14, 1869-1885




DOI: http://dx.doi.org/10.14203/risetgeotam2013.v23.65

Refbacks

  • There are currently no refbacks.


Copyright (c) 2013 Kasdi Subagyono

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Publish by BRIN Publishing (Penerbit BRIN)

 

Indexed by:

        

 

Plagiarism checker: