PERBANDINGAN ANALISIS POROSITAS PORITES MENGGUNAKAN TEKNIK MICRO-CT DAN OPTIK

Lina Nur Listiyowati

Abstract


Makalah ini membahas perbandingan nilai porositas sampel karang Porites berdasarkan citra yang dihasilkan dari teknik optik dan micro-CT. Teknik optik biasa digunakan dalam perhitungan porositas batuan dengan menghitung prosentasi lubang pori dengan matrik batuan pada sayatan tipis. Micro-Computed Thomography (micro-CT) merupakan teknik nondestructive yang sering digunakan dalam analisa 3D untuk menginvestigasi struktur internal sebuah benda, termasuk rongga pori.  Karakteristik dan nilai porositas karang Porites ditentukan dengan mengklasifikasikan citra micro-CT dan optik sebagai pori dan matrik berdasarkan tingkat keabuannya. Karakteristik pori menunjukkan bahwa teknik optik lebih bisa mengidentifikasi struktur pori yang menerus dan memanjang, sedangkan micro-CT lebih mampu mengidentifikasi pori dengan kebundaran tinggi. Hasil penelitian juga menunjukkan bahwa metode micro-CT mampu mengidentifikasi ruang pori lebih banyak dibanding pada klasifikasi secara optik pada lapisan yang sama. Nilai porositas karang Porites berdasarkan teknik micro-CT dan teknik optik tidak menunjukkan perbedaan yang signifikan sehingga teknik micro-CT dapat digunakan dalam perhitungan porositas karang Porites dimana teknik micro-CT mampu mengidentifikasi pori yang sering tidak teridentifikasi oleh teknik optik.

This paper discusses the porosity value comparation of Porites coral based on optical and micro Computed Thomography (micro-CT) images to get the opium value of porosity. Optical techniques are commonly used in rock porosity measurement by measure prosentase of holes and matrix based on thin sections, whereas micro-CT as a non-destructive 3D analysis technique is commonly used to investigate internal structures of an object, including rock void porosity void.. Characteristic and porosity value of Porites coral are determined based on the percentage of pores void and matrics. These pores and matrics are identified using grey scale-based micro-CT and optical images classification. Pore-based characteristic shows that optical method is better to identify continuous and elongated pore structuresthan the micro-CT method which  is good to identify high circular pores. Micro-CT method is able to identify pore space better than optical classification method.  There were not significant differences of Porites coral values based on micro-CT and optical techniques. These results show that micro-CT technique can be used for Porites porosity measurement. Furthermore, unidentified pore by optical technique can be detected by micro-CT.

Keywords


micro-CT, Porites, porositas, sayatan tipis

References


Al-Rousan, S., Al-Shloul, R., Al-Horani, F., and Abu-Hilal, A., 2012. Heavy metals signature of human activities recorded in coral skeletons along the Jordanian coast of the Gulf of Aqaba, Red Sea. Environ Earth Sci. 67, 2003–2013. DOI :10.1007/s12665-012-1640-0

Anselmetti, F.S., Luthi, S., Eberli, G.P., 1998. Quantitative characterization of carbonate pore system by digital Image Analysis. AAPG Bulletin, 82 (10), 1815-1836. DOI: 10.7892/boris.87075

Barnes, D.J. and Devereux, M.J., 1988. Variation in skeletal architecture associated with density banding in the hard coral Porites. J. Exp. Mar. Biol. Ecol. 121, 37-54.

DOI :10.1016/0022-0981(88)90022-6

Bucher, D.J., Harriott, V.J., Roberts, L.G., 1998. Skeletal micro-density, porosity and bulk density of acroporid corals. J. Exp. Mar. Biol. Ecol. 228, 117-136. DOI: 10.1016/S0022-0981(98)00020-3

Canny, J., 1986. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence. 6, 679-698. DOI: 10.1109/TPAMI.1986.4767851

Carlson, W.D., Denison, C., Ketcham, R.A., 1999. High-Resolution X-ray computed tomography as a tool for visualization and quantitative analysis of igneous textures in three dimensions. Electronic Geosci. 4, 3.

Carlson, W.D., Rowe, T., Ketcham, R.A., Colbert, M.W., 2003. Applications of highresolution X-ray computed tomography in petrology, meteoritics and paleontology. In: Mees, F., Swennen, R., Van Geet, M., Jacobs, P. (Eds.), Applications of X-ray Computed Tomography in the Geosciences: Geological Society, London, Special Publication, 215, 7–22. DOI: 10.1144/GSL.SP.2003.215.01.02

Caroselli, E., Prada, F., Pasquini, L., Marzano, F. N., Zaccanti, F., Falini, G., Levy, O., Dubinsky, Z., Goffredo, S., 2011. Environmental implications of skeletal micro-density and porosity variation in two scleractinian corals. Zoology 114, 255–264. DOI :10.1016/j.zool.2011.04.003

Clarkson, C.R., Bustin, R.M., 1996. Variation in micropore capacity and size distribution with composition in bituminous coal of the Western Canadian Sedimentary Basin: implications for coalbed methane potential. Fuel 75, 1483–1498.

DOI: 10.1016/0016-2361(96)00142-1

Cnudde, V., Boone, M.N., 2013. High-resolution X-ray computed tomography in geosciences : A review of the current technology and applications. Earth-Science Reviews. 123, 1-17.

DOI: 10.1016/j.earscirev.2013.04.003

Cnudde, V., Silversmit, G., Boone, M., Dewanckele, J., De Samber, B., Schoonjans, T., Van Loo, D., De Witte, Y., Elburg, M., Vincze, L., Van Hoorebeke, L., Jacobs, P., 2009. Multi-disciplinary characterisation of a sandstone surface crust. Sci. Total. Environ. 407 (20), 5417–5427.

DOI :10.1016/j.scitotenv.2009.06.040

Hasan, S.M.A., and Ko, K., 2016. Depth edge detection by image-based smoothing and morphological operations. J. Comp. Design. Eng. 3, 191-197. DOI :10.1016/j.jcde.2016.02.002

Keller, 1998. High resolution, Non-destructive measurement and characterization of fracture apertures. Int. J. Rock Mech. Min. Sci. 35 (8), 1037-1050. DOI :10.1016/S0148-9062(98)00164-8

Laine, J., Labady, M., Albornoz, A., Yunes, S., 2008. Porisities and pore sizes in coralline calcium carbonate. Mater. Charact. 59 (10), 1522-1525. DOI :10.1016/j.matchar.2007.12.002

Landis, E.N., Petrell, A.L., Lu, S., dan Nagy, E.N., 2000. Examination of pore structure usingthree-dimensional citra analysis of microtomographic data. Concrete Sci. Eng. 2, 162-169.

Li, X. W., Cho, S J., dan Kim, S.T., 2014. High security and robust optical image encryption approach based on computer-generated integral imaging pickup and iterative back-projection techniques. Opt. Laser. Eng. 55, 162-182. DOI :10.1016/j.optlaseng.2013.10.024

Mayo, S., Josh, M., Nesterets, Y., Esteban, L., Pervukhina, M., Clennell, M.B., Maksimenko, A., Hall, C., 2015. Quantitative micro-porosity characterization using synchrotron micro-CT and xenon K-edge subtraction in sandstones, carbonates, shales and coal. Fuel. 154, 167-173.

DOI: 10.1016/j.fuel.2015.03.046

Mazumder, S., Wolf, K.H.A.A., Elewaut, K., Ephraim, R., 2006. Application of X-ray computed tomography for analyzing cleat spacing and cleat aperture in coal sampels. Int. J. Coal. Geol. 68, 205-222.

Meng, Y., Li, Z., dan Lai, F., 2015. Experimental study on porosity and permeability of anthracite coal under different stresses. J. Petrol. Sci. Eng. 133, 810-817. DOI :10.1016/j.petrol.2015.04.012

Movilla, J., Calvo, E., Coma, R., Serrano, E., Lopez-Sanz, A., dan Pelejero, C., 2016. Annual respone of two Mediterranean azooxanthellate temperate corals to low-pH and high-temperature conditions. Mar. Biol. 163, 135. DOI :10.1007/s00227-016-2908-9

Roche, R.C., Abel, R.A., Johnson, K.G., Perry, C. T., 2010. Quantification of porosity in Acropora pulchra (Brook 1891) using X-ray micro-computed tomography techniques. J. Exp. Mar. Ecol. 396. 1-9. DOI :10.1016/j.jembe.2010.10.006

Taud, H., Martinez-Angeles, R., Parrot, J.F., Hernandez-Escobedo, L., 2005. Porosity estimation method by X-ray computed tomography. J. Petrol. Sci. Eng. 47, 209– 217.

DOI :10.1016/j.petrol.2005.03.009

Teng, J., Mastalerz, M., Hampton, L., 2017. Maceral controls on porosity characteristics of lithotypes of Pennsylvanian high volatile bituminous coal: Example from the Illnois Basin. Int. J. Coal. Geol. 172, 80-94. DOI :10.1016/j.coal.2017.02.001

Van Geet, M., Lagrou, D., Swennen, R., 2003. Porosity measurement of sedimentary rocks by means of microfocus X-ray computed tomography (µCT). Applications of X-ray Computed Tomography in the Geosciences. Geological Society, London, Special Publication, 215, 51-60.0305-8719,03/S15. DOI: 10.1144/GSL.SP.2003.215.01.05

Van Geet, M., Swennen, R., Wevers, M., 2001. Towards 3-D petrography: application of microfocus computer tomography in geological science. Comput. Geosci. 27, 1091-1099.

DOI :10.1016/S0098-3004(00)00154-0

Veron, J.E.N., Pichon, M., 1982. Scleractinia of eastern Australia, part IV, family Poritidae. Australian Institute qf Marine Science Monograph Series. 5, 159.

Wu, L., Yanming, Z., Shangbin, C., Hui, W., 2011. Respon of coal reservoir porosity to magma intrusion in the Shandong Qiwu Mine, China. Min. Sci. Tech. (China) 21, 185-190.

DOI :10.1016/j.mstc.2011.02.008

Yao, Y., Liu, D., Che, Y., Tang, D., Tang, S., Huang, W., 2009. Non-destructive characterization of coal sampels from China using microfocus X-ray computed tomography. Int. J. Coal. Geol. 80, 113-123. DOI :10.1016/j.coal.2009.08.001




DOI: http://dx.doi.org/10.14203/risetgeotam2018.v28.635

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Lina Nur Listiyowati

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS

 

Indexed by:

        

 

Plagiarism checker: