KARAKTERISTIK KIMIA DAN ISOTOP FLUIDA PANAS BUMI DAERAH GUNUNG TAMPOMAS, JAWA BARAT
Abstract
Gunung Tampomas merupakan salah satu daerah di Jawa Barat yang memiliki manifestasi panas bumi berupa mata air panas di sekitarnya. Penelitan potensi dan karakterisasi reservoir panas bumi Gunung Tampomas telah dilakukan dengan menggunakan metode kimia serta isotop alam 18O dan 2H (deuterium) dari mata air panas dan dingin di sekitar Gunung Tampomas dengan temperatur mata air berkisar antara 20ºC hingga 50ºC. Interpretasi hasil analisis tersebut dimaksudkan untuk mengetahui karakteristik reservoir seperti asal-usul fluida, temperatur reservoir dan evolusi fluida. Hasil analisis menunjukkan bahwa sebagian mata air panas Gunung Tampomas yaitu Ciseupan dan Ciuyah memiliki kandungan klorida tinggi yang mengindikasikan fluida berasal dari reservoir panas bumi. Sementara berdasarkan perhitungan geotermometer daerah panas bumi Gunung Tampomas memiliki potensi panas bumi yang tergolong medium entalpi dengan temperatur berkisar 120-220°C. Fluida panas bumi berasal dari air meteorik dengan sedikit pencampuran dengan air magmatik. Berdasarkan data geokimia, reservoir Gunung Tampomas diperkirakan memiliki reservoir yang terletak cukup dalam.
Mount Tampomas is one of many areas in West Java that has several geothermal manifestations around it. A study about geothermal potential and reservoir has been done using chemistry and natural isotopes methods taken from hot springs and cold springs around Mount Tampomas with temperature range from 20ºC to 50ºC. The interpretation of analysis results was aimed for reservoir characterization i.e. fluid origin, reservoir temperature and conceptual model of Mount Tampomas reservoir. Analysis result shows that some of hot springs, i.e. Ciseupan and Ciuyah have high chloride content that indicates the fluids are reservoir origin. While based on geothermometer calculation, Mount Tampomas has geothermal potential with temperature range 120°C to 220°C, catagorized as medium enthalpy. The geothermal fluids are meteoric origin and slightly mixed with magmatic waters. Based on geochemical evidence, the reservoir of Mount Tampomas is estimated deep seated.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Aggarwal, P.K., Araguas-Araguas, L., Groning, M., Kulkarni, K.M., Kurttas, T., Newman, B.D., Tanweer, A., 2009, Laser Spectroscopic Analysis of Liquid Water Samples for Stable Hydrogen and Oxygen Isotopes. Training Course Series 35, IAEA, Vienna.
Alçiçek, H., Bulbul, A., Alçiçek, M.C., 2016, Hydrogeochemistry of the thermal waters from the Yenice geothermal field (Denizli Basin, southwestern Anatolia Turkey), Journal of Volcanology and Geothermal Research, vol 309, 118-138. http://dx.doi.org/10.1016/j.jvolgeores.2015.10.025
Arnorsson, S., Bjarnasson, J.O., Giroud, N., Gunnarsson, I., Stefansson, A., 2006, Sampling and Analysis of Geothermal Fluids. Geofluids vol.6 pp 203-216, 2006. http://dx.doi.org/10.1111/j.1468-8123.2006.00147.x
ASTM D4327-11, 2011, Standard Test Method for Anions in Water by Suppressed Ion Chromatography. ASTM International, West Conshohocken, PA
ASTM D6919-09, 2009, Standard Test Method for Determination of Dissolved Alkali and Alkaline Earth Cations and Ammonium in Water and Wastewater by Ion Chromatography. ASTM International, West Conshohocken, PA.
ASTM D859-16, 2016, Standard Test Method for Silica in Water. ASTM International, West Conshohocken, PA.
Clark, I., Fritz, P., 1997, Environmental Isotopes in Hydrogeology. Lewis Publisher, New York, 1997.
Cumming, W., 2016, Geophysics and resource conceptual models in geothermal exploration and development in: Geothermal Power Generation - developments and innovation, Ronald DiPippo (ed), Woodhead Publishing Series in Energy: Number 97.
Darma, S., Tisnaldi, R. Gunawan, 2015, Country Update: Geothermal Energy Use and Development in Indonesia. Proceedings World Geothermal Congress, Melbourne, Australia, 19-25 April 2015.
Djuri, 1995, Peta Geologi Lembar Arjawinangun, Jawa, skala 1:100.000. Pusat Penelitian dan Pengembangan Geologi, 1995
Fournier, R.O., 1979, A revised equation for the Na/K geothermometer, Geotherm. Resources Council Trans., 3. 221-224
Giggenbach, W.F., 1988, "Geothermal Solute Equilibria: Derivation of Na-K-Mg-Ca Geoindicators", Geochim. Cosmochim Acta 52, 2749-2765, 1988. http://dx.doi.org/10.1016/0016-7037(88)90143-3
Kühn, M., 2004, Reactive flow modeling of hydrothermal system, Springer-Verlag Berlin Heidelberg
Mohammed, N., Celle-Jeanton, H., Huneau, F., Le Coustumer, P., Lavastre, V., Bertrand, G., Charrier, G., Clauzet, M.L., 2014, Isotopic and geochemical identification of main groundwater supply cources to an alluvial aquifer, the Allier River valley (France), Journal of Hydrology 508, 181-196. DOI: 10.1016/j.jhydrol.2013.10.051
Murray, K.S., 1996, Hydrology and geochemistry of thermal waters in the Upper Napa Valley, California, Ground Water vol 34 no 6, http://dx.doi.org/10.1111/j.1745-6584.1996.tb02178.x
Nicholson, K., 1993, Geothermal fluids, chemistry and exploration techniques, Springer-Verlag, Berlin
Silitonga, P.H., 1973, Peta Geologi Lembar Bandung, Jawa Barat, skala 1:100.000. Direktorat Geologi Bandung, 1973
Verma, M.P., 2000, Chemical thermodynamics of silica: a critique on its geothermometer, Geothermics vol 29, issue 3, 323-346, https://doi.org/10.1016/S0375-6505(99)00064-4
Vespasiano, G., Apollaro, C., Muto, F., Dotsika, E., De Rosa, R., Marini, L., 2014, Chemical and isotopic characteristics of the warm and cold water of the Luigiane Spa near Guardia Piemontese (Calabria, Italy) in a complex faulted geological framework. Applied Geochemistry 41, 73-88. DOI: 10.1016/j.apgeochem.2013.11.014
DOI: http://dx.doi.org/10.14203/risetgeotam2018.v28.508
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Rasi Prasetio, Neneng Laksminingpuri, Satrio Satrio
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS
Indexed by:
Plagiarism checker: