ASSESSMENT MODEL FOR DETERMINING SOIL ERODIBILITY FACTOR IN LOMBOK ISLAND

Muhammad Rahman Djuwansah, Asep Mulyono

Abstract


One of soil parameters that affects the rate of erosion is the soil erodibility. Soil erodibility studies had been conducted in one of the watershed of Lombok in 2015. The tests were carried out for five soil profiles by taking samples from each layers. Samples were analyzed for particles sizes and organic matter contents. The analysis was performed using two assessment models of soil erodibility, the Universal Soil Loss Equation (USLE) and Erosion Productivity Impact Calculator (EPIC) models. Obtained soil erodibility (K factors) values varied from 0.07 to 0.74 for USLE models and 0.18 to 0.46 for EPIC models. Statistical similarity (R) test resulted R=-0.28*10-19. It has indicated that there was no statistical difference between the results of both methods. The older volcanic rocks give a high erodibility factor. In this study, vertisols soils show a higher erodibility factor than other volcanic rocks, such as inceptisols, andisols and entisols soil. Lower soil organic matter and clay contents are the factors that influence high soil erodibility.

Salah satu parameter tanah yang sangat berpengaruh terhadap besarnya erosi adalah faktor erodibilitas tanah. Studi erodibilitas tanah telah dilakukan di salah satu DAS di Pulau Lombok dengan uji lapangan. Uji lapangan dilakukan pada 5 profil tanah dan pengambilan sampel pada setiap lapisan untuk uji laboratorium terhadap kandungan partikel pasir, debu, liat dan bahan organik tanah. Analisis dilakukan menggunakan 2 model prediksi erodibilitas tanah yaitu model Universal Soil Loss Equation (USLE) dan Erosion Productivity Impact Calculator (EPIC). Nilai erodibilitas tanah dengan model USLE berkisar 0.07-0.74 dan 0.18-0.46 dengan model EPIC. Analisis statistik dengan tes R menghasilkan R=-0,28*10-19 yang menandakan nilai K yang diperoleh oleh kedua metode tidak berbeda. Endapan batuan vulkanik yang lebih tua di wilayah studi menghasilkan tingkat erodibilitas yang tinggi. Jenis tanah vertisols yang berasal dari endapan batuan volkanik tua menghasilkan tingkat erodibilitas tanah yang lebih tinggi dibandingkan jenis tanah lain yang terbentuk dari endapan batuan vulkanik seperti tanah inceptisols, andisols dan entisols. Semakin rendahnya kandungan bahan organik dan liat dalam tanah mengakibatkan semakin tingginya erodibilitas tanah.


Keywords


Erodibility, erosion, Universal Soil Loss Equation (USLE), Erosion Productivity Impact Calculator (EPIC)

Full Text:

PDF

References


Anasiru, R. H., Rayes, M. L., Setiawan, B., and Soemarno, 2013. Economic Valuation of Soil Erosion on Cultivated Drylands inLangge Sub-watershed, Gorontalo, Indonesia. Journal of Natural Sciences Research, 3(8), 40-48. ISSN (Paper)2224-3186 ISSN (Online)2225-0921

Bagarello, V., Di Stefano, C., Ferro, V., Giordano, G., Iovino, M. and Pampalone, V., 2012. Estimating the USLE the Soil Erodibility Factor in Sicily, South Italy. Applied Engineering in Agriculture, 28, 199-206. DOI: 10.13031/2013.41347

Bathrellos, G, Skilodimou, H., 2007. Using The Analytic Hierarchy Process To Create An Erosion Risk Map. A Case Study in Malakasiotiko Stream, Trikala Prefecture. Bulletin of the Geological Society of Greece, XXXX, 1904–1915.

Baver, I. D., Gardner, W. H., and Gardner, W. R., 1972. Soil Physics. John Willey & Sons, Inc. 498pp

Bonilla, C. A., and Johnson, O. I., 2012. Soil Erodibility Mapping and Its Correlation with Soil Properties in Central Chile. Geoderma, 189-190, 116 – 123. DOI: 10.1016/j.geoderma.2012.05.005

Bonita, 2014. Characteristics of Dodokan Watershed in Mataram City, West Lombok regency (In Indonesian). Jurnal Media Bina Ilmiah, 8, 1.

BPDAS DMS., 2009. Identification and Critical Land Inventory NTB Report (In Indonesian). Center for Watershed Management Dodokan Moyosari, Mataram.

Buttigieg, P. L., Ramette, A., 2014. A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses. FEMS Microbiology Ecology, 90 (3), 543–550.DOI:10.1111/1574-6941. 12437.

Chatterjee, S., Krishna, A. P., and Sharma, A. P., 2013. Geospatial assessment of soil erosion vulnerability at watershedlevel in some sections of the Upper Subarnarekha river basin, Jharkhand, India. Environ Earth Sci. Springer-Verlag Berlin Heidelberg. DOI 10.1007/s12665-013-2439-3.

Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Austral Ecology. 18 (1), 117–143. DOI:10.1111/j.1442-9993.1993. tb00438.x.

Djuwansah, M. R., Narulita, I., Mulyono, A., and Rusydi, A. F., 2015. Optimization of Land Use For Sustainable Water Availability in Small Island (In Indonesian). Research Center for Geotechnology LIPI, Competitive Research Report 2015 (unpublished).

Hassan, K. F., and Agha, M. D., 2012. Effects of Calcium Carbonate on The Erodibility of Some Calcareouse Soils by Water Erosion. Mesoptamia J. of Agri., 40 (4) ISSN: 2224-9796.

Herawati, T., 2011. Erosion Hazard Level Spatial Analysis in Area Das Cisadane Watershed at Bogor Regency (In Indonesian). Journal of Forest Research and Nature Conservation, 7(4), 413-424.

Indonesia Center for Agricultural Land Resources Research and Development (ICALRD), 2012. Map of Land Resource 1:250.000 scale, Mataram Sheet. Indonesia Center for Agricultural Land Resources Research and Development.

Imani, R., Ghasemieh, H. and Mirzavand, M., 2014. Determining and Mapping Soil Erodibility Factor (Case Study: Yamchi Watershed in Northwest of Iran). Open Journal of Soil Science, 4, 168-173. DOI: 10.4236/ojss.2014.45020

Mangga, S. A., Atmawinata, S., Hermanto, B., Setyogroho, B., and Amin, T. C., 1994. Geological Map of Lombok Sheet West Nusa Tenggara (In Indonesian). Geological Research and Development Center, Bandung.

Manyiwa, T. and Dikinya, O., 2013. Using Universal Soil Loss Equation and Soil Erodibility Factor to Assess Soil Erosion in Tshesebe Village, Northeast Botswana. African Journal of Agricultural Research, 8, 4170-4178. DOI: 10.5897/AJAR2013.7081

Ministry of Public Works, 2010. Water Resources Management Pattern Lombok Island River Area (In Indonesian). Decree of the Minister of Public Works of Water Resources Management Pattern River Region. No: 589/KPTS/M/2010.

Morgan, R. P. C., 1995. Soil erosion and conservation. Longman, 198pp.

Panagos, P., Meusburger, K., Alewell, C. and Montanarella, L., 2012. Soil Erodibility Estimation Using LUCAS Point Survey Data of Europe. Environmental Modeling & Software, 30, 143-145.

DOI: 10.1016/j.envsoft.2011.11.002

Schwab G., Fangmeier D., Elliot W., and Frevert R., 1992. Soil And Water Conservation Engineering, 4th ed. Wiley, New York, 526pp.

Schwab, G. O., Fangmeier, D. D., and Elliot, W. J., 1996. Soil and Water Management Systems. John Willey & Sons, Inc. 371 pp.

Setiady, D., Sukmana, N., Kurnio, H., and Cahyo, N., 2001. Surficial Sea Bottom Sediments and Composition of Heavy Minerals In the Eastern Lombok Waters. Bulletin of Marine Geology, 16 (1), 23-33.

Sharply, A. N., and Williams, J. R., 1990. EPIC-Erosion/Productivity Impact Calculator I, model documentation. U.S. Department of Agriculture Technical Bulletin, No. 1768. (Washington, DC:USDA Agricultural Research Service), 235 pp.

Soil Research Institute, 2005. Hint Chemical Analysis Soil, Plant, Water and Fertilizers (In Indonesian). Centre for Research and Development of Soil and Agro-climate. Agency for Agricultural Research and Development. Agriculture Department.

Soil Survey Division Staff, 1993. Soil Survey Division Manual. Soil Conservation Service. U.S. Department of Agriculture Handbook No.18.

Soil Survey Staff, 1990. Keys for Soil Taxonomy. SMSS Technical Monograph No. 19 Fourth Edition. Cornell University.

Teh, C. B. S., 2002. A computer program to determine the soil texture class for any classification scheme. Agro-Search, 9, 19-21.

USDA, 1983. National Soil Survey Handbook. No. 430. US Department of Agriculture, USDA, Washington DC.

USDA, 2014. Kellog Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42. Version 5.0 US Department of Agriculture, USDA, Washington DC.

Utami Dewi, I. G. A. S., Trigunasih, N. M., Kusmawati, T. 2012. Erosion Prediction and Soil and Water Conservation Planning in Saba Watershed (In Indonesian). Tropical Agroekotechnology Journal, 1(1), 12-23.

Wang, B., zheng, F. and Romkens, M. J. M., 2013. Comparison of soil erodibility factors in USLE, RUSLE2, EPIC and Dgmodels based on a Chinese soil erodibility database. Acta Agriculturae Scandinavica Section B, 63 (1) , 69-79.

Wischmeier, W. H., and Smith, D. D., 1978. Predicting rainfall erosion losses. A guide to conservation planning. United States Department of Agriculture Agricultural Handbook 537.

Wischmeier, W. H., Johnson, C. B., and Cross, B. V., 1971. A soil erodibility nomograph for farmland and construction sites. Journal of Soil and Water Conservation, 26, 189-193.

World Agroforestry Centre, 2010. Watershed Condition Assessment with PaLA Method and Flow Persistence model (In Indonesian). Brief No. 08 Policy Analysis Unit.

Yusof, M. F., Abdullah, R., Azamathulla, H. M., Zakaria, N. A., and Ghani, A. A. B., 2011. Modified Soil Erdodibility Factor, K for Peninsular alaysia Soil Series. 3rd International Conference on Managing Rivers in the 21th Century. Sustainable Solutions for Global Crisis of Flooding, Pollution and Water Scarcity. In 6-9 Desember 2011 Penang, Malaysia.




DOI: http://dx.doi.org/10.14203/risetgeotam2017.v27.417

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Muhammad Rahman Djuwansah, Asep Mulyono

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS

 

Indexed by:

        

 

Plagiarism checker: