Comparing Numerical Methods for Infiltration Estimation: A Statistical Approach to Accuracy and Efficiency

Gumilar Utamas Nugraha, Hendra Bakti, Nico Anatoly, Racmat Fajar Lubis, Waskito Budi Utomo, Yuniarti Ulfa

Abstract


This study evaluates four numerical methods—Euler, Heun, Runge-Kutta 4th order (RK4), and Adams-Bashforth—in terms of their accuracy and computational efficiency for solving the Horton infiltration model, which is crucial for hydrological studies. The methods were applied to simulate soil infiltration and cumulative recharge, with a focus on determining the most suitable method for practical applications in water resource management, agriculture, and soil conservation. An ANOVA (Analysis of Variance) test was conducted to assess the statistical significance of differences in the results obtained from the methods. The test revealed no significant differences between the methods (p-value = 0.9995), indicating that despite differences in computational complexity and accuracy, the methods produced similar results. The Euler method, being the simplest and fastest, provided acceptable results for shorter simulations or less critical applications, while RK4 and Heun, though more computationally expensive, yielded more accurate estimates. Adams-Bashforth offered a reasonable balance between accuracy and efficiency. This study highlights the importance of selecting the appropriate numerical method based on both accuracy and computational cost, particularly for real-time applications and large-scale simulations in hydrology. The findings suggest that simpler methods like Euler can be used for less critical tasks, while more accurate methods like RK4 should be employed for high-precision modeling in complex hydrological scenarios.


Keywords


Numerical Methods, Horton Infiltration Model, Computational Efficiency, Hydrological Modeling, ANOVA Test

Full Text:

PDF

References


Bayabil, H. K., Dile, Y. T., Tebebu, T. Y., Engda, T. A., & Steenhuis, T. S. (2019). Evaluating infiltration models and pedotransfer functions: Implications for hydrologic modeling. Geoderma, 338, 159–169. https://doi.org/https://doi.org/10.1016/j.geoderma.2018.11.028

Beven, K. (2004). Infiltration excess at the Horton Hydrology Laboratory (or not?). Journal of Hydrology, 293(1), 219–234. https://doi.org/https://doi.org/10.1016/j.jhydrol.2004.02.001

Cherifi, D., Boudjada, M., Morsli, A., Girard, G., & Deriche, R. (2018). Combining Improved Euler and Runge-Kutta 4th order for Tractography in Diffusion-Weighted MRI. Biomedical Signal Processing and Control, 41, 90–99. https://doi.org/https://doi.org/10.1016/j.bspc.2017.11.008

Fernandes, D. F., Santos, M. C., Silva, A. C., & Lima, A. M. M. (2024). Comparative study of CUDA-based parallel programming in C and Python for GPU acceleration of the 4th order Runge-Kutta method. Nuclear Engineering and Design, 421, 113050.

https://doi.org/https://doi.org/10.1016/j.nucengdes.2024.113050

Godwin, I. A., Reba, M. L., Leslie, D. L., Adams, R. F., & Rigby, J. R. (2022). Feasibility of farm-scale infiltration galleries for managed aquifer recharge in an agricultural alluvial aquifer of Northeast Arkansas. Agricultural Water Management, 264, 107531. https://doi.org/https://doi.org/10.1016/j.agwat.2022.107531

Govindaraju, R. S., & Goyal, A. (2022). Chapter 13 - Rainfall and infiltration. In R. Morbidelli (Ed.), Rainfall (pp. 367–396). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-822544-8.00007-X

Huang, F., Gao, Y., Hu, X., Wang, X., & Pu, S. (2024). Influence of precipitation infiltration recharge on hydrological processes of the karst aquifer system and adjacent river. Journal of Hydrology, 639, 131656. https://doi.org/https://doi.org/10.1016/j.jhydrol.2024.131656

Hussain, K., Ismail, F., & Senu, N. (2016). Solving directly special fourth-order ordinary differential equations using Runge–Kutta type method. Journal of Computational and Applied Mathematics, 306, 179–199. https://doi.org/https://doi.org/10.1016/j.cam.2016.04.002

Kéry, M. (2010a). Chapter 9 - Normal One-Way ANOVA. In M. Kéry (Ed.), Introduction to WinBUGS for Ecologists (pp. 115–127). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-378605-0.00009-0

Kéry, M. (2010b). Chapter 10 - Normal Two-Way ANOVA. In M. Kéry (Ed.), Introduction to WinBUGS for Ecologists (pp. 129–139). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-378605-0.00010-7

Khalili, M., Göransson, P., Hesthaven, J. S., Pasanen, A., Vauhkonen, M., & Lähivaara, T. (2024). Monitoring of water volume in a porous reservoir using seismic data: A 3D simulation study. Journal of Applied Geophysics, 229, 105453.

https://doi.org/https://doi.org/10.1016/j.jappgeo.2024.105453

Kirkham, M. B. (2023). Chapter 13 - Infiltration. In M. B. Kirkham (Ed.), Principles of Soil and Plant Water Relations (Third Edition) (pp. 223–248). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-323-95641-3.00015-5

Kong, Q., Siauw, T., & Bayen, A. M. (2021). Chapter 22 - Ordinary Differential Equations (ODEs) Initial-Value Problems. In Q. Kong, T. Siauw, & A. M. Bayen (Eds.), Python Programming and Numerical Methods (pp. 371–398). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-819549-9.00032-4

Li, M., Liu, T., Duan, L., Luo, Y., Ma, L., Zhang, J., Zhou, Y., & Chen, Z. (2024). Chapter 3 - The scale effect of double-ring infiltration and soil infiltration zoning in a semiarid steppe. In X. Wang (Ed.), Water-Soil-Vegetation Nexus and Climate Change (pp. 71–90). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-820106-0.00004-X

Pezeshk, S., & Camp, C. V. (1994). Dynamic analyses of multiple-degree-of-freedom structures using a modified heun method. Computers & Structures, 50(6), 729–741. https://doi.org/https://doi.org/10.1016/0045-7949(94)90308-5

Rashidinia, J., Khasi, M., & Fasshauer, G. E. (2018). A stable Gaussian radial basis function method for solving nonlinear unsteady convection–diffusion–reaction equations. Computers & Mathematics with Applications, 75(5), 1831–1850. https://doi.org/https://doi.org/10.1016/j.camwa.2017.12.007

Roy, D. K., Leslie, D. L., Reba, M. L., Hashem, A. A., Bellis, E., & Nowlin, J. (2024). Optimizing the quantity of recharge water into a sedimentary aquifer through infiltration galleries using a surrogate assisted coupled simulation–optimization approach. Journal of Hydrology, 635, 131183. https://doi.org/https://doi.org/10.1016/j.jhydrol.2024.131183

Sasidharan, S., Bradford, S. A., Šimůnek, J., & Kraemer, S. R. (2021). Comparison of recharge from drywells and infiltration basins: A modeling study. Journal of Hydrology, 594, 125720. https://doi.org/https://doi.org/10.1016/j.jhydrol.2020.125720

Seiler, K. P., & GAT, J. R. (2012). groundwater rechargue from run-off, infiltration and percolation. In Uma ética para quantos? https://doi.org/10.1007/s13398-014-0173-7.2

Şen, Z. (2015). Chapter 1 - Water Science Basic Information. In Z. Şen (Ed.), Practical and Applied Hydrogeology (pp. 1–41). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-800075-5.00001-7

Shao, W., & Chen, C. (2025a). A fourth order Runge-Kutta type of exponential time differencing and triangular spectral element method for two dimensional nonlinear Maxwell’s equations. Applied Numerical Mathematics, 207, 348–369. https://doi.org/https://doi.org/10.1016/j.apnum.2024.09.008

Shao, W., & Chen, C. (2025b). A fourth order Runge-Kutta type of exponential time differencing and triangular spectral element method for two dimensional nonlinear Maxwell’s equations. Applied Numerical Mathematics, 207, 348–369. https://doi.org/https://doi.org/10.1016/j.apnum.2024.09.008

Tay, K. G., Kek, S. L., Cheong, T. H., Abdul-Kahar, R., & Lee, M. F. (2015). The Fourth Order Runge-Kutta Spreadsheet Calculator Using VBA Programing for Ordinary Differential Equations. Procedia - Social and Behavioral Sciences, 204, 231–239. https://doi.org/https://doi.org/10.1016/j.sbspro.2015.08.145

Thai-Quang, N., Le-Cao, K., Mai-Duy, N., Tran, C.-D., & Tran-Cong, T. (2013). A numerical scheme based on compact integrated-RBFs and Adams–Bashforth/Crank–Nicolson algorithms for diffusion and unsteady fluid flow problems. Engineering Analysis with Boundary Elements, 37(12), 1653–1667. https://doi.org/https://doi.org/10.1016/j.enganabound.2013.09.011

Tostado-Véliz, M., Kamel, S., & Jurado, F. (2020). An efficient power-flow approach based on Heun and King-Werner’s methods for solving both well and ill-conditioned cases. International Journal of Electrical Power & Energy Systems, 119, 105869. https://doi.org/https://doi.org/10.1016/j.ijepes.2020.105869

Verma, S. C. (1982). Modified Horton’s infiltration equation. Journal of Hydrology, 58(3), 383–388. https://doi.org/https://doi.org/10.1016/0022-1694(82)90047-6

Wang, D., Dong, S., Ning, M., & Incecik, A. (2021). Extended variable-time-step Adams–Bashforth–Moulton method for strongly coupled fluid–structure interaction simulation. Ocean Engineering, 219, 108335. https://doi.org/https://doi.org/10.1016/j.oceaneng.2020.108335

Wang, N., & Chu, X. (2020). Revised Horton model for event and continuous simulations of infiltration. Journal of Hydrology, 589, 125215. https://doi.org/https://doi.org/10.1016/j.jhydrol.2020.125215

WANG, Q. J. (1992). Chapter 2 - Analytical and numerical modelling of unsaturated flow. In J. P. O’Kane (Ed.), Advances in Theoretical Hydrology (pp. 17–26). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-89831-9.50009-0

Yang, M., Zhang, Y., & Pan, X. (2020). Improving the Horton infiltration equation by considering soil moisture variation. Journal of Hydrology, 586, 124864. https://doi.org/https://doi.org/10.1016/j.jhydrol.2020.124864

Zago, M. M., Fries, M., & Ramires, J. E. F. (2020). Groundwater infiltration in a gold mine–A geoelectrical investigation model as an aid to dewatering process determination. Journal of Applied Geophysics, 172. https://doi.org/10.1016/j.jappgeo.2019.103909




DOI: http://dx.doi.org/10.55981/risetgeotam.2025.1394

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Gumilar Utamas Nugraha, Hendra Bakti

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Riset Geologi dan Pertambangan, ISSN 0125-9849 (print) 2354 6638 (online) by BRIN Publishing

Indexed by:

   

Plagiarism checker: