Microzonation of Soil Resistance Based on Shear Wave Velocity Variation: Case Study of Kampung Melayu District, Bengkulu City

Aminah Rahmadani Lubis, Lindung Zalbuin Mase, Khairul Amri, Rena Misliniyati, Fepy Supriani

Abstract


This research presents a unique microzonation map based on shear wave variations, specifically Vs10, Vs20, Vs30, Vs40, and Vs50. Microzonation is dividing a region into smaller zones based on specific characteristics, such as soil resistance to seismic waves. The method used in this research includes secondary data collection of shear wave velocity values and soil layers in the District of Kampung Melayu, then producing shear wave velocity distribution at various depths, soil site class distribution map, and Ground Amplification Factor (GAF) distribution map. The results of this study indicate that the variation in shear wave velocity at different depths provides an overview of the soil type resistance in Kampung Melayu  District, Bengkulu City. The resulting microzonation map, a novel approach in this context, indicates an increase in the Vs value with increasing depth. Additionally, the Ground Amplification Factor (GAF) distribution reveals that areas with low soilspecific resistance exhibit higher amplification values, thereby increasing their susceptibility to seismic vibrations. These findings provide valuable and novel information for earthquake risk mitigation and the planning of safer infrastructure in this area, significantly contributing to civil engineering and urban planning.


Keywords


Microzonation, Kampung Melayu, Distribution Map, Shear Wave Velocity, Resistance

Full Text:

PDF

References


Aki, K., 1993. Local site effects on weak and strong ground motion. Tectonophysics 218, 93–111.

Anbazhagan, P., Sitharam, T.G., 2008. Site Characterization and Site Response Studies Using Shear Wave Velocity. J. Seismol. Earthq. Eng. 10, 53–67.

Anbazhagan, P., Thingbaijam, K.K.S., Nath, S.K., Narendara Kumar, J.N., Sitharam, T.G., 2010. Multi-criteria seismic hazard evaluation for Bangalore city, India. J. Asian Earth Sci. 38, 186–198.

Baram, A., Yagoda-Biran, G., Kamai, R., 2020. Evaluating proxy-based site response in Israel. Bull. Seismol. Soc. Am. 110, 2953–2966.

BSSC, 2020. Recommended provisions for seismic regulation for new buildings and other structures: Part 1-Provisions and Part 2-Commentary, (FEMA 302, 303). Building Seismic Safety Council, National Institute of Building Sciences, Washington DC.

Farid, M., Mase, L.Z., 2020. Implementation of seismic hazard mitigation on the basis of ground shear strain indicator for spatial plan of Bengkulu city, Indonesia. Int. J. GEOMATE 18, 199–207.

Fikri, M.H., Kamal, T.M., Al Hanipa, R., Mase, L.Z., Misliniyati, R., Supriani, F., 2025. Geospatial Modelling of Soil Engineering Properties in Bengkulu City: A Three-Dimensional Approach. Transp. Infrastruct. Geotechnol. 12, 58.

Gue, S.S., Gue, C.S., 2022. Geotechnical Challenges on Soft Ground. J. Civ. Eng. Sci. Technol. 13, 84–96.

International Code Council, Inc., 2020. 2021 International Building Code.

Kamai, R., Abrahamson, N.A., Silva, W.J., 2016. VS30 in the NGA GMPEs: Regional differences and suggested practice. Earthq. Spectra 32, 2083–2108

Kamal, T.M., Mase, L.Z., Misliniyati, R., Supriani, F., Refrizon, 2024. Density distribution of shear wave velocity, cone resistance and corrected SPT in the dominant soils of Bengkulu City, Indonesia. Geol. Min. Res. 34, 83–96.

Mase, L.Z., 2017. Liquefaction potential analysis along coastal area of Bengkulu province due to the 2007 Mw 8.6 Bengkulu earthquake. J. Eng. Technol. Sci. 49, 721–736.

Mase, L.Z., 2018. Reliability study of spectral acceleration designs against earthquakes in Bengkulu City, Indonesia. Int. J. Technol. 9, 910–924.

Mase, L.Z., 2020. Seismic Hazard Vulnerability of Bengkulu City, Indonesia, Based on Deterministic Seismic Hazard Analysis. Geotech. Geol. Eng. 38, 5433–5455

Mase, L.Z., 2022. Local seismic hazard map based on the response spectra of stiff and very dense soils in Bengkulu city, Indonesia. Geod. Geodyn. 13, 573–584.

Mase, L.Z., Agustina, S., Anggraini, P.W., 2020. Seismic hazard microzonation of ground response parameters in Bengkulu City, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 528, 012051.

Mase, L.Z., Amri, K., Ueda, K., Apriani, R., Utami, F., Tobita, T., Likitlersuang, S., 2024. Geophysical investigation on the subsoil characteristics of the Dendam Tak Sudah Lake site in Bengkulu City, Indonesia. Acta Geophys. 72, 893–913.

Mase, L.Z., Fathani, T.F., Adi, A.D., 2021. A Simple Shaking Table Test To Measure Liquefaction Potential of Prambanan Area, Yogyakarta, Indonesia. ASEAN Eng. J. 11, 89–108.

Mase, L.Z., Gustina, D., Zahara, A., Supriani, F., Chaiyaput, S., Syahbana, A.J., 2025. The Joint Method of Ground Response and Structural Dynamic Analyses for Building Inspection Under a Large Megathrust Earthquake. Transp. Infrastruct. Geotechnol. 12, 1.

Mase, L.Z., Irsyam, M., Gustiparani, D., Noptapia, A.N., Syahbana, A.J., Soebowo, E., 2024. Identification of bedrock depth along a downstream segment of Muara Bangkahulu River, Bengkulu City, Indonesia. Bull. Eng. Geol. Environ. 83, 4.

Mase, L.Z., Keawsawasvong, S., 2022. Seismic Hazard Maps of Bengkulu City, Indonesia, Considering Probabilistic Spectral Response for Medium and Stiff Soils. Open Civ. Eng. J. 16, e221021.

Mase, L.Z., Likitlersuang, S., 2021. Implementation of Seismic Ground Response Analysis in Estimating Liquefaction Potential in Northern Thailand. Indones. J. Geosci. 8, 371–383.

Mase, L.Z., Likitlersuang, S., Tobita, T., 2018. Non-linear Site Response Analysis of Soil Sites in Northern Thailand during the Mw 6.8 Tarlay Earthquake. Eng. J. 22, 292–303.

Mase, L.Z., Somantri, A.K., Chaiyaput, S., Febriansya, A., Syahbana, A.J., 2023. Analysis of ground response and potential seismic damage to sites surrounding Cimandiri Fault, West Java, Indonesia. Nat. Hazards 119, 1273–1313.

Mase, L.Z., Tanapalungkorn, W., Likitlersuang, S., Ueda, K., Tobita, T., 2022. Liquefaction analysis of Izumio sands under variation of ground motions during strong earthquake in Osaka, Japan. Soils Found. 62, 101218.

Mayne, P.W., 2007. In-situ test calibrations for evaluating soil parameters. In: Tan, T.S. (Ed.), Characterization & Engineering Properties of Natural Soils, 3rd ed. Taylor & Francis, pp. 1601–1652.

Midorikawa, S., Matsuoka, M., 1994. Site Effects on Strong Motion Records Observed During the 1987 Chhiba-Ken-Toho-Oki, Japan Earthquake. Proc. 9th Jpn. Earthq. Eng. Symp. 3, 85–90.

Misliniyati, R., Mase, L.Z., Refrizon, Primaningtyas, W.D., Fahrezi, Z., Zahara, A., Anggraini, G.D., Sari, E.Y., 2025. Liquefaction Risk Assessment and Microzonation in Bengkulu Port Area After a Megathrust Earthquake. Geotech. Geol. Eng. 43, 126.

Odum, J.K., Williams, R.A., Stephenson, W.J., Worley, D.M., Von Hillebrandt-Andrade, C., Asencio, E., Irizarry, H., Cameron, A., 2007. Near-Surface Shear Wave Velocity Versus Depth Profiles, Vs30, and NEHRP Classifications For 27 Sites in Puerto Rico. U.S. Geol.

Surv. Open-File Rep. 2007-1174.

Prajapati, R., Dhonju, S., Bijukchhen, S.M., Shigefuji, M., Takai, N., 2024. Estimation of Vs30 and site classification of Bhaktapur district, Nepal using microtremor array measurement. Earth Planets Space 76, 1–4.

Refrizon, Mase, L.Z., 2021. Geophysical observation to several sites around Pulau Baai Port, Bengkulu City, Indonesia. AIP Conf. Proc. 2320, 020033.

Sambath, M., Chandrasekaran, S.S., Maithani, S., Ganapathy, G.P., 2025. Seismic Site Characterization of Coimbatore city, Tamil Nadu, India using the Multi-channel Analysis of Surface Waves (MASW) test and Correlations between shear-wave velocity and SPT-N. J. Appl. Geophys. 232, 105575.

Somantri, A.K., Mase, L.Z., Susanto, A., Gunadi, R., Febriansya, A., 2023. Analysis of Ground Response of Bandung Region Subsoils due to Predicted Earthquake Triggered by Lembang Fault, West Java Province, Indonesia. Geotech. Geol. Eng. 41, 1155–1181.

Thitimakorn, T., 2013. Development of a NEHRP site classification map of Chiang Mai city, Thailand, based on shear-wave velocity using the MASW technique. J. Geophys. Eng. 10, 045007.

Thitimakorn, T., Raenak, T., 2016. NEHRP Site Classification and Preliminary Soil Amplification Maps of Lamphun City, Northern Thailand. Open Geosci. 8, 538–547.

Zhu, Y., Wang, Z., Seth Carpenter, N., Woolery, E.W., Haneberg, W.C., 2021. Mapping fundamental-mode site periods and amplifications from thick sediments: An example from the jackson purchase region of western Kentucky, central United States. Bull. Seismol. Soc. Am. 111, 1868–1884.




DOI: http://dx.doi.org/10.55981/risetgeotam.2025.1361

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Aminah Rahmadani Lubis, Lindung Zalbuin Mase, Khairul Amri, Rena Misliniyati, Fepy Supriani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Riset Geologi dan Pertambangan, ISSN 0125-9849 (print) 2354 6638 (online) by BRIN Publishing

Indexed by:

   

Plagiarism checker: