A SYSTEMATIC REVIEW OF GEOLOGICAL RESOURCE CONTAINING NICKEL : RESOURCE, DISTRIBUTION, MINING, EXTRACTION AND ADVANCED MATERIAL SYNTHESIS

Solihin Solihin, Anisya Lisdiana, Eki Naidania Dida

Abstract


Nickel ore is the main source of nickel, an important metal used in many modern materials. This paper gives a brief overview of different aspects of nickel ore, such as its history, types, distribution, demand, and the technology used for mining and processing it. The two main types of nickel ore are nickel sulfide ore and laterite ore. Indonesia has significant nickel ore deposits, primarily in the form of laterite, due to its tropical climate with high temperatures and rainfall. Nickel is essential for making various important materials like stainless steel, special alloys, plating, and batteries. Laterite also contains other valuable elements like iron, magnesium, silicon, and oxygen, found in compounds such as goethite, nickel oxide, magnesium silicate, and quartz. Laterite ore can be processed to produce nickel matte, ferronickel, and nickel pig iron. The paper also discusses advanced materials made from laterite ore, including photocatalysts and batteries. Mining and processing activities have both positive and negative effects on local communities. To minimize negative impacts, it is important to consider the satisfaction of both the local community and the government in the initial planning of mining and processing projects.

Keywords


laterite, nickel, deposit, economic geology

Full Text:

PDF

References


Adventy, A., 2024. Vale Indonesia (INCO) Produksi 34.774 Ton Nikel dalam Matte Semester I/2024. Market Bisnis. https://market.bisnis.com/read/20240730/192/1786550/vale-indonesia-inco-produksi-34774-ton-nikel-dalam-matte-semester-i2024. Accessed 25-10-2024.

Affan, S. I., 2023. Nikel Diproyeksi Oversuplai 2024, Kenaikan Harga Bakal Moderat. https://www.bloombergtechnoz.com/detail-news/24343/nikel-diproyeksi-oversuplai-2024-kenaikan-harga-bakal-moderat. Accessed 26-10-2024.

Altansukh, B., Haga, K., Shibayama, A., 2014. Recovery of Nickel and Cobalt from a Low Grade Laterite Ore. Resour. Process. 61, 100–109. https://doi.org/10.4144/rpsj.61.100

Arabatzis, I., Todorova, N., Fasaki, I., Tsesmeli, C., Peppas, A., Li, W.X., Zhao, Z., 2018. Photocatalytic, self-cleaning, antireflective coating for photovoltaic panels: Characterization and monitoring in real conditions. Sol. Energy 159, 251–259. https://doi.org/10.1016/j.solener.2017.10.088

Banerjee, S., Dionysiou, D.D., Pillai, S.C., 2015. Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl. Catal. B Environ. 176–177, 396–428. https://doi.org/10.1016/j.apcatb.2015.03.058

Barnes, S.J., and Lightfoot, P.C., 2005. Formation of magmatic nickel sulphide ore deposits and processes affecting their copper and platinum group element contents. Society of Economic Geology 100, 1-35. https://doi.org/10.5382/AV100.08

Buchanan, F.A., 1807. A Journey from Malabar through the Countries of Mysore, Canana, and Malabar. London, East India Company, 12p ,436-460pp.

Butt, C.R.M., Cluzel, D., 2013. Nickel laterite ore deposits: Weathered serpentinites. Elements 9, 123–128. https://doi.org/10.2113/gselements.9.2.123

Brown, T.J., Idoine, N.E., Wrighton, C.E., Raycraft, E.R., Hobbs, S.F., Shaw, R.A., Everett, P., Deady, E.A., Kresse, C., 2020. World mineral production 2015–2019, British Geological Survey.

Chang, L., Wei, A., Luo, S., Bi, X., Yang, W., Yang, R., Liu, J., 2023. Preparation of LiFePO4/C cathode material by extracting Fe2O3 from laterite nickel ore by ammonium jarosite method. J. Alloys Compd. 936, 168078. https://doi.org/10.1016/j.jallcom.2022.168078

Chayambuka, K., Mulder, G., Danilov, D.L., Notten, P.H.L., 2018. Sodium-Ion Battery Materials and Electrochemical Properties Reviewed. Adv. Energy Mater. 8, 1–49. https://doi.org/10.1002/aenm.201800079

Chen, Y., Zhang, X., Shi, Q., Zhang, G., Li, Q., 2018. Investigation of the flotation performance of nickel sulphide by high intensity agitation pretreatment. Sep. Sci. Technol. 57, 2955–2959. https://doi.org/10.1080/01496395.2018.1509873

Crundwell, F.K., Moats, M.S., Ramachandran, V., Robinson, T.G., and Davenport, W.G., 2011. Extractive Metallurgy of Nickel, Cobalt, and Platinum-Group Metals. Elsevier, Amsterdam. 610 pp.

Das, A., Wary, R.R., Nair, R.G., 2020. Cu modified ZnO nanoflakes: An efficient visible light-driven photocatalyst and a promising photoanode for dye sensitized solar cell (DSSC). Solid State Sci. 104, 106290. https://doi.org/10.1016/j.solidstatesciences.2020.106290

Dilshara, P., Abeysinghe, B., Premasiri, R., Dushyantha, N., Ratnayake, N., Senarath, S., Batapola, N., 2024. The role of nickel (Ni) as a critical metal in clean energy transition: Applications, global distribution and occurrences, production-demand and phytomining. Journal of Asian Earth Sciences 259, 105912.

Durant, A., 2023. The rise and rise of Indonesian HPAL – can it continue?. Wood McKenzie. https://www.woodmac.com/news/opinion/rise-of-indonesian-hpal/. Accessed 26-10-2024.

Duan, J., Tang, X., Dai, H., Yang, Y., Wu, W., Wei, X., Huang, Y., 2020. Building Safe Lithium-Ion Batteries for Electric Vehicles: A Review, Electrochemical Energy Reviews. Springer Singapore. https://doi.org/10.1007/s41918-019-00060-4

Einhorn, D., 2015. Where are the world's top nickel deposits located? http://born2invest.com/cdn/where-are-the-worlds-top-nickel-deposits-located/. Accessed 29-10-2024.

Elias, M., 2002. Nickel laterite deposits – geological overview , resources and exploitation. Cent. Ore Depos. Res. Univ. Tasmania 1-24 hal.

Fan, E., Li, L., Wang, Z., Lin, J., Huang, Y., Yao, Y., Chen, R., Wu, F., 2020. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chem. Rev. 120, 7020–7063. https://doi.org/10.1021/acs.chemrev.9b00535

Gabarrón, M., Zornoza, R., Acosta, J.A., Faz, Á., Martínez-Martínez, S., 2019. Mining environments. Adv. Chem. Pollution, Environ. Manag. Prot. 4, 157–205. https://doi.org/10.1016/bs.apmp.2019.07.003ca

Geng, Q., Wang, H., Chen, R., Chen, L., Li, K., Dong, F., 2022. Advances and challenges of photocatalytic technology for air purification. Earth Environ. Sci. 1. https://doi.org/10.1360/nso/20220025

Gerber Group., 2024. Indonesian nickel ore and NPI prices have risen strongly since start of the year – Stainless Espresso. Steel News. https://steelnews.biz/indonesian-nickel-ore-npi-prices-have-risen-strongly/ . Accessed 25-10-2024.

Gidigasu, M.D., 1976. Developments in Geotechnical Engineering Volume 9: Laterite Soil Engineering Pedogenesis and Engineering Principles. Elsevier Scientific Publishing Company, Amsterdam, 554 pp.

Global BatteryAlliance., 2019. A vision for a sustainable battery value chain in 2030: Unlocking the full potential to power sustainable development and climate change mitigation. World Econ. Forum Geneva, Switzerland.

Gupta, C.K., 2003. Chemical Metallurgy. Wiley-VCH Verlag, Weinheim. 811 pp.

Halim, K.S.A., El-Geassy, A.A., Nasr, M.I., Ramadan, M., Fathy, N., Al-Ghamdi, A.S., 2024. Characteristics and applications of iron oxides reduction processes. Polish J. Chem. Technol. 26, 39–50. https://doi.org/10.2478/pjct-2024-0005

Hamrin, H., (2001) Underground Mining Methods and Applications. In: Hustrulid WA, and Bullock RL (ed) Underground Mining Methods. Society of Mining, Metallurgy, and Exploration, Colorado. pp 1-14.

Hartman, H.L., 1987. Introductory to mining engineering. John Wiley and Sons, Canada. 591 pp.

Imideev, V.A., Aleksandrov, P. V., Medvedev, A.S., Bazhenova, O. V., Khanapieva, A.R., 2014. Nickel Sulfide Concentrate Processing Using Low-Temperature Roasting with Sodium Chloride. Metallurgist 58, 353–359. https://doi.org/10.1007/s11015-014-9915-1

Jamali, A., Binudi, R., Adjiantoro, B., 2018. Proses Dekarburisasi Nickel Pig Iron. Metalurgi 29, 153. https://doi.org/10.14203/metalurgi.v29i2.287

Javanshir, S., Mofrad, Z.H., Azargoon, A., 2018. Atmospheric pressure leaching of nickel from a low-grade nickel-bearing ore. Physicochem. Probl. Miner. Process. 54, 890–900. https://doi.org/10.5277/ppmp1891

Khasawneh, O.F.S., Alaniandy, P., 2021. Removal of organic pollutants from water by Fe2O3/TiO2 based photocatalytic degradation: A review. Environ. Technol. Innov. 21. https://doi.org/10.1016/j.eti.2020.101230

Kyle J., 2010. Nickel laterite processing technologies – where to next?. ALTA 2010 Nickel/Cobalt/Copper Conference, Perth, Western Australia, 1-38.

Loughnan F.C., 1969. Chemical Weathering of the Silicate Minerals. Elsevier, New York, 154 pp.

Nazir, M., Murdifin, I., Putra, A.H.P.K., Hamzah, N., Murfat, M.Z., 2020. Analysis of economic development based on environment resources in the mining sector. J. Asian Financ. Econ. Bus. 7, 133–143. https://doi.org/10.13106/JAFEB.2020.VOL7.NO6.133

Mamaghani, A.H., Haghighat, F., Lee, C.S., 2017. Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Appl. Catal. B Environ. 203, 247–269. https://doi.org/10.1016/j.apcatb.2016.10.037

Ministry of Energy and Mineral Resource Republic of Indonesia, 2023. Potensi Menjanjikan, Nikel RI Bakal Laris Manis Pikat Investor . https://www.esdm.go.id/id/media-center/arsip-berita/potensi-menjanjikan-nikel-ri-bakal-laris-manis-pikat-investor-. Accessed 27-10-2024.

Mitchell, A. and Pickens, N., 2022. Nickel and copper: building blocks for a greener future. www.woodmac.com/news/opinion/nickel-and-copper-building-blocks-for-a-greener-future/. Accessed 25-10-2024.

Moats, M.S., Davenport, W.G., 2014. Nickel and cobalt production, Treatise on Process Metallurgy. elsevier. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-096988-6.00006-7

Mohrbacher, H., Kern, A., 2023. Nickel Alloying in Carbon Steel: Fundamentals and Applications. Alloys 2, 1–28. https://doi.org/10.3390/alloys2010001

Moskalyk, R.R., Alfantazi, A.M., 2002. Nickel laterite processing and electrowinning practice. Miner. Eng. 15, 593–605. https://doi.org/10.1016/S0892-6875(02)00083-3

Mudd, G.M., Jowitt, S.M., 2014. A detailed assessment of global nickel resource trends and endowments. Econ. Geol. 109, 1813–1841. https://doi.org/10.2113/econgeo.109.7.1813

Naldrett A.J., Hoffman E.L., Green A.H., Chou C.L., Naldrett S.R., 1979. The composition of nickel sulfide ores, with particular reference to their content of PGE and Au. Canadian Mineralogist. 17, 403-415.

Naldrett A.J., 2004. Magmatic Sulfide Deposits: Geology, Geochemistry, and Exploration. Springer-Verlag, Berlin. 727 pp.

Nitta, N., Wu, F., Lee, J.T., Yushin, G., 2015. Li-ion battery materials: Present and future. Mater. Today 18, 252–264. https://doi.org/10.1016/j.mattod.2014.10.040

Nishiyama, H., Yamada, T., Nakabayashi, M., Maehara, Y., Yamaguchi, M., Kuromiya, Y., Nagatsuma, Y., Tokudome, H., Akiyama, S., Watanabe, T., Narushima, R., Okunaka, S., Shibata, N., Takata, T., Hisatomi, T., Domen, K., 2021. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 598, 304–307. https://doi.org/10.1038/s41586-021-03907-3

Pawliszak, P., Bradshaw-Hajek, B.H., Skinner, W., Beattie, D.A., Krasowska, M., 2024. Frothers in flotation: A review of performance and function in the context of chemical classification. Miner. Eng. 207, 108567. https://doi.org/10.1016/j.mineng.2023.108567

Persons B.S.,1970. Laterite, Genesis, Location and Use. Plenum Press, New York, 112 pp.

Qureshi, A.A., Javed, S., Muhammad, H., Javed, A., Akram, A., Jamshaid, M., Shaheen, A., 2020. Strategic design of Cu / TiO2-based photoanode and rGO-Fe3O4-based counter electrode for optimized plasmonic dye-sensitized solar cells Strategic design of Cu / TiO 2 -based photoanode and rGO-Fe 3 O 4 -based counter electrode for optimized plasmonic dye-. Opt. Mater. (Amst). 109, 110267.

Romero, J.M., Pardo, Y.S., Parra, M., Castillo, A.D.J., Maury, H., Corredor, L., Sánchez, I., Rueda, B., Gonzalez-Quiroga, A., 2022. Improving the rotary kiln-electric furnace process for ferronickel production: Data analytics-based assessment of dust insufflation into the rotary kiln flame. Alexandria Eng. J. 61, 3215–3228. https://doi.org/10.1016/j.aej.2021.08.036

Stratview Research, 2022. Photocatalyst Market Size, Share, Trend, Forecast, & Industry Analysis: 2023-2028. https://www.stratviewresearch.com/565/photocatalyst-market.html. Accessed 28-10-2024.

Shiddiq, 2024. Proyek Pembangunan HPAL dan RKEF Harita Nickel On Progress. Media Nikel Indonesia. https://nikel.co.id/2024/04/04/proyek-pembangunan-hpal-dan-rkef-harita-nickel-on-progress/ . Accessed 29-10-2024.

Solihin, S., 2015. Synthesis of Nickel Containing Pig Iron (Ncpi) By Using Limonite Type of Lateritic Ore From South East Sulawesi. J. Ris. Geol. dan Pertamb. 25, 31. https://doi.org/10.14203/risetgeotam2015.v25.183

Solihin, S., Lisdiana, A., Wahab, H.I., Dida, E.N., 2024. Synthesis of nitrogen-doped maghemite photocatalyst using laterite ore and its application to decompose methylene blue. Int. J. Environ. Sci. Technol. 21, 3587–3598. https://doi.org/10.1007/s13762-023-05205-z

Tahir, M.B., Sohaib, M., Sagir, M., Rafique, M., 2021. Role of Nanotechnology in Photocatalysis. Encycl. Smart Mater. 578–589. https://doi.org/10.1016/B978-0-12-815732-9.00006-1

Tamehe, L.S., Zhao, Y., Xu, W., Gao, J., 2024. Ni(Co) Laterite Deposits of Southeast Asia: A Review and Perspective. Minerals 14. https://doi.org/10.3390/min14020134

Wu, Y., Shuang, W., Wang, Y., Chen, F., Tang, S., Wu, X.L., Bai, Z., Yang, L., Zhang, J., 2024. Recent Progress in Sodium-Ion Batteries: Advanced Materials, Reaction Mechanisms and Energy Applications, Electrochemical Energy Reviews. Springer Nature Singapore. https://doi.org/10.1007/s41918-024-00215-y

Yasuda, M., Matsumoto, T., Yamashita, T., 2018. Sacrificial hydrogen production over TiO2-based photocatalysts: Polyols, carboxylic acids, and saccharides. Renew. Sustain. Energy Rev. 81, 1627–1635. https://doi.org/10.1016/j.rser.2017.05.243

Zhang, T., Liu, J., Zhou, F., Zhou, S., Wu, J., Chen, D., Xu, Q., Lu, J., 2020. Polymer-Coated Fe2O3Nanoparticles for Photocatalytic Degradation of Organic Materials and Antibiotics in Water. ACS Appl. Nano Mater. 3, 9200–9208. https://doi.org/10.1021/acsanm.0c01829




DOI: http://dx.doi.org/10.55981/risetgeotam.2024.1339

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Solihin Solihin, Anisya Lisdiana, Eki Naidania Dida

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Riset Geologi dan Pertambangan, ISSN 0125-9849 (print) 2354 6638 (online) by BRIN Publishing

Indexed by:

   

Plagiarism checker: