LANDSLIDE SUSCEPTIBILITY ZONATION USING WEIGHT OF EVIDENCE METHOD IN MERTELU AND TEGALREJO, GEDANGSARI, GUNUNGKIDUL, SPECIAL REGION OF YOGYAKARTA, INDONESIA

Mochammad Farhan Dzaki, Hendy Setiawan, Rahmadi Hidayat

Abstract


Mertelu and Tegalrejo are situated in the Gedangsari Subdistrict, Gunungkidul Regency, Special Region of Yogyakarta, Indonesia. Located in the northern Baturagung Range, Southern Mountains Zone of East Java, with much hilly topography and mountainous areas with steep slopes, Mertelu and Tegalrejo are prone to landslides. The purpose of this research is to produce a landslide susceptibility zone using the weight of evidence (WoE) method. There were 73 landslide data taken from December 2022 to January 2023. As much as 80% of the data were used as a training dataset for weighting and generating the model map, while the remaining 20% were used as a test dataset. Parameters used in this research include slope angle, lithology, distance to faults, distance to rivers, and land use. Each parameter was weighted using the WoE method, and then the map of each parameter was overlaid to produce a map of landslide susceptibility zones. The accuracy of the map was calculated using the area under curve (AUC) method, including the success rate curve (SRC) and prediction rate curve (PRC). Based on the research results, the landslide susceptibility zone in the research area can be categorized: (1) very low, covering 6.34% of the total research area, (2) low, covering 24.15% of the total research area, (3) moderate, covering 44.46% of the total research area, and (4) high, covering 25.05% of the total research area. The landslide susceptibility map shows that the research location is predominantly characterized by areas with medium to high susceptibility to landslides. The medium and high susceptibility zones are close to the rivers that serve as the alignment of the faults. The accuracy calculations result in an SRC value of 0.753 and a PRC value of 0.780, both can be classified as “good” performance.

Keywords


landslide, Gedangsari, weight of evidence, susceptibility zone

Full Text:

PDF

References


Affandi, E., Ng, T.F., Pereira, J.J., Ahmad, F., & Banks, V.J. (2023). Revalidation Technique on Landslide Susceptibility Modelling: An Approach to Local Level Disaster Risk Management in Kuala Lumpur, Malaysia. Applied Sciences, 13 (2), 768. https://doi.org/10.3390/app13020768.

Bacha, A. S., Shafique, M., & van der Werf, H. (2018). Landslide inventory and susceptibility modelling using geospatial tools, in Hunza-Nagar valley, northern Pakistan. Journal of Mountain Science, 15(6), 1354–1370. https://doi.org/10.1007/s11629-017-4697-0

Barianto, D. H., Margono, U., Husein, S., Novian, M. I., & Permana, A. K. (2017). Peta Geologi Lembar Wonosari (1408-31). Pusat Survei Geologi Badan Geologi Kementerian Energi Dan Sumber Daya Mineral.

Bekkar, M., Djemma, H. K., & Alitouche, T. A. (2013). Evaluation Measures for Models Assessment over imbalanced data sets. Journal of Information Engineering and Applications, 3(10), 27–38. https://doi.org/10.7176/JIEA

Blais-Stevens, A., Behnia, P., Kremer, M., Page, A., Kung, R., & Bonham_Carter, G. (2012). Landslide susceptibility mapping of the Sea to Sky transportation corridor, British Columbia, Canada: comparison of two methods. Bulletin of Engineering Geology and the Environment, 71, 447–466. https://doi.org/10.1007/s10064-012-0421-z

Budianta, W. (2020). Pemetaan Kawasan Rawan Tanah Longsor di Kecamatan Gedangsari, Kabupaten Gunungkidul, Yogyakarta dengan Metode Analytical Hierarchy Process (AHP). Jurnal Pengabdian Kepada Masyarakat, 6, 68–73. https://doi.org/10.22146/jpkm.45637

Cellek, S. (2023). Linear Parameters Causing Landslides: A Case Study of Distance to the Road, Fault. and Drainage. Kocaeli Journal of Science and Engineering, 6(2), 94–113. https://doi.org/10.34088/kojose.1117817

Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Masuda, T., & Nishino, K. (2008). GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environmental Geology, 54, 311–324. https://doi.org/10.1007/s00254-007-0818-3

Dai, F. C., Lee, C. F., & ZHang, X. H. (2001). GIS-based geo-environmental evaluation for urban land-use planning: a case study. Engineering Geology, 61, 257–271. https://doi.org/10.1016/S0013-7952(01)00028-X

Das, J., Saha, P., Mitra, R., Alam, A., & Kamruzzaman, M. (2023). GIS-based data-driven bivariate statistical models for landslide susceptibility prediction in Upper Tista Basin, India. Heliyon, 9(5), e16186. https://doi.org/10.1016/j. heliyon.2023.e16186

Getachew, N., & Meten, M. (2001). Weights of Evidence Modeling for Landslide Susceptibility Mapping of Kabi-Gebro Locality, Gundomeskel Area, Central Ethiopia. Geoenvironmental Disasters, 8(6). https://doi.org/10.1186/s40677-021-00177-z

Grabowski, D., Laskowicz, I., Małka, A., & Rubinkiewicz, J. (2022). Geoenvironmental Conditioning of Landsliding in River Valleys of Lowland Regions and Its Significance in Landslide Susceptibility Assessment: A Case Study in the Lower Vistula Valley, Northern Poland. Geomorphology, 419, 108490. https://doi.org/10.1016/j.geomorph.2022.108490.

Gupta, V., Kumar, S., Kaur, R., and Tandon, R.S. (2022). Regional-Scale Landslide Susceptibility Assessment for the Hilly State of Uttarakhand, NW Himalaya, India. Journal of Earth System Science, 131(1), 2. https://doi.org/10.1007/s12040-021-01746-4.

Hungr, O., Leroueil, S., & Picarelli, L. (2014). The Varnes classification of landslide types, an update. Landslides, 11, 167–194. https://doi.org/10.1007/s10346-013-0436-y

Ilia, I., & Tsangaratos, P. (2016). Applying Weight of Evidence Method and Sensitivity Analysis to Produce a Landslide Susceptibility Map. Landslides, 13, 379–397. https://doi.org/10.1007/s10346-015-0576-3

Karnawati, D. (2007). Mekanisme Gerakan Massa Batuan Akibat Gempabumi: Tinjauan dan Analisis Geologi Teknik. Dinamika Teknik Sipil, 7, 179–190. http://hdl.handle.net/11617/125

Kumar, R., & Anbalagan, R. (2019). Landslide susceptibility mapping of the Tehri reservoir rim area using the weights of evidence method. Journal of Earth System Science, 128, 153. https://doi.org/10.1007/s12040-019-1159-9

Li, L., & Lan, H. (2023). Bivariate landslide susceptibility analysis: clarification, optimization, open software, and preliminary comparison. Remote Sensing, 15(5), 1418. https://doi.org/10.3390/rs15051418

Pamela, Sadisun, I. A., Kartiko, R. D., & Arifianti, Y. (2018). Metode Kombinasi Weight of Evidence (WoE) dan Logistic Regression (LR) untuk Pemetaan Kerentanan Gerakan Tanah di Takengon, Aceh. Jurnal Lingkungan Dan Bencana Geologi, 9(2), 77–86. https://jlbg.geologi.esdm.go.id/index.php/jlbg

Pradhan, B., Oh, H. J., & Buchroithner, M. (2010). Weight of Evidence Model Applied to Landslide Susceptibility Mapping in a Tropical Hilly Area. Geomatics, Natural Hazard and Risk, 1(3), 199–223. https://doi.org/10.1080/19475705.2010.498151

Prasetyadi, C., Sudarno, I., Indranadi, V. B., & Surono. (2011). Pola dan Genesa Struktur Geologi Pegunungan Selatan, Provinsi Daerah Istimewa Yogyakarta dan Provinsi Jawa Tengah. Jurnal Sumber Daya Geologi, 21, 91–107. https://doi.org/10.33332/jgsm.geologi.v21i2.138

PVMBG. (2013). Peta Zona Kerentanan Gerakan Tanah Kabupaten Gunungkidul, D. I. Yogyakarta. Pusat Vulkanologi Dan Mitigasi Bencana Geologi.

Shirzadi, A., Chapi, K., Shahabi, H., Solaimani, K., Kavian, A., & Bin Ahmad, B. (2017). Rock fall susceptibility assessment along a mountainous road: an evaluation of bivariate statistic, analytical hierarchy process and frequency ratio. Environmental Earth Sciences, 76, 152. https://doi.org/10.1007/s12665-017-6471-6

Surono. (2009). Litostratigrafi Pegunungan Selatan Bagian Timur Daerah Istimewa Yogyakarta dan Jawa Tengah. Jurnal Sumber Daya Geologi, 19(3), 209–221. https://doi.org/10.33332/jgsm.geologi.v19i3.206

van Westen, C. J., Castellanos, E., & Kuriakose, S. L. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102(3–4), 112–131. https://doi.org/10.1016/j.enggeo.2008.03.010

van Zuidam, R. A. (1985). Aerial Photo-Interpretation in Terrain Analysis and Geomorphic Mapping. International Institute for Aerospace Survey and Earth Science (ITC) 978-9070043247.

Yalcin, A., & Bulut, F. (2007). Landslide susceptibility maping using GIS and digital photogrammetric techniques: a case study from Ardesen (NE-Turkey). Natural Hazards, 41, 201–226. https://doi.org/10.1007/s11069-006-9030-0

Yatini, Y., & Suyanto, I. (2018). Identification of slip surface based on geoelectrical dipole-dipole in the landslides hazardous area of Gedangsari District, Gunungkidul Regency, Province of Daerah Istimewa Yogyakarta, Indonesia. IOP Conf. Ser.: Earth Environ. Sci. 212, 012013. https://doi.org/10.1088/1755-1315/212/1/012013




DOI: http://dx.doi.org/10.55981/risetgeotam.2024.1299

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Mochammad Farhan Dzaki, Hendy Setiawan, Rahmadi Hidayat

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Publish by BRIN Publishing (Penerbit BRIN)

 

Indexed by:

        

 

Plagiarism checker: