SEISMIC HAZARD MICROZONATION BASED ON PROBABILITY SEISMIC HAZARD ANALYSIS IN BANDUNG BASIN

Anggun Mayang Sari, Afnindar Fakhrurrozi

Abstract


The geological and seismic-tectonic setting in the Bandung Basin area proliferates the seismicity risk. Thus, it is necessary to investigate the seismic hazards caused by the foremost seismic source that affects the ground motions in the bedrock. This research employed Probability Seismic Hazard Analysis (PSHA) method to determine the peak ground acceleration value. It considers the source of the earthquakes in the radius of 500 km with a return period of 2500 years. The analysis results showed that the Peak Ground Acceleration (PGA) in this region varies from 0.46 g to 0.70 g. It correlates with the magnitude and hypocentre of the dominant earthquake source of the study locations. The PGA value on the bedrock was used as an input to develop the seismic hazard microzonation map. It was composed using the Geographic Information System (GIS) to visualise the result. This research provides a scientific foundation for constructing residential buildings and infrastructure, particularly as earthquake loads in the building structure design calculations.

ABSTRACT - Mikrozonasi Bahaya Seismik Berdasarkan Probability Seismic Hazard Analysis di Cekungan Bandung. Kondisi geologi dan seismik-tektonik di Cekungan Bandung meningkatkan risiko kegempaan di wilayah tersebut. Oleh karena itu, perlu dilakukan penelitian tentang bahaya seismik yang disebabkan oleh sumber-sumber gempa di sekitarnya yang mempengaruhi gelombang gempa di batuan dasar. Penelitian ini menggunakan metode Probability Seismic Hazard Analysis (PSHA) untuk menentukan nilai percepatan gelombang gempa di batuan dasar. Lebih lanjut penelitian ini menggunakan sumber gempa dalam radius 500 km dengan periode perulangan 2500 tahun. Hasil analisis menunjukkan bahwa Peak Ground Acceleration (PGA) di wilayah ini bervariasi dari 0,46 g hingga 0,70 g. Hal ini berkorelasi dengan magnitudo dan jarak hiposenter sumber gempa dominan terhadap lokasi penelitian. Nilai PGA di batuan dasar digunakan sebagai input data dalam pembuatan peta mikrozonasi bahaya seismik. Peta mikrozonasi bahaya seismik disusun dan divisualisasikan menggunakan Sistem Informasi Geografis (SIG). Luaran penelitian ini menghasilkan landasan ilmiah pada konstruksi bangunan tempat tinggal dan infrastruktur, khususnya sebagai pembebanan gempa dalam perhitungan desain struktur bangunan.


Keywords


Seismic hazard, PSHA, PGA in the bedrock, GIS, Bandung Basin

Full Text:

PDF

References


Alzwar, M., Akbar, N., Bachri, N., 1992. Peta geologi lembar Garut dan Pameungpeuk, Jawa: Geological map of the Garut dan Pameungpeuk quadrangle, Jawa, in: Peta Geologi Bersistem Indonesia. Pusat Penelitian dan Pengembangan Geologi, Bandung, pp. 1208–6, 1208–3.

Atkinson, G.M., Boore, D.M., 2003. Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions. Bull. Seismol. Soc. Am. 93, 1703–1729. https://doi.org/10.1785/0120020156

Baker, J.W., 2013. White Paper: Introduction to Probabilistic Seismic Hazard Analysis.

Boore, D.M., Atkinson, G.M., 2008. Ground- motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthq. Spectra 24, 99– 138. https://doi.org/10.1193/1.2830434

Campbell, K.W., Bozorgnia, Y., 2008. NGA Ground Motion Model for the Geometric Mean Horizontal Component of PGA, PGV, PGD, and 5% Damped Linear Elastic Response Spectra for Periods Ranging from 0.01 to 10 s. Earthq. Spectra 24, 139–171. https://doi.org/10.1193/1.2857546

Chiou, B., Darragh, R., Gregor, N., Silva, W., 2008. NGA Project Strong-Motion Database. Earthq. Spectra 24, 23–44. https://doi.org/10.1193/1.2894831

Chiou, B.S.J., Youngs, R.R., 2008. An NGA model for the average horizontal component of peak ground motion and response spectra. Earthq. Spectra 24, 173–215. https://doi.org/10.1193/1.2894832

Daryono, M.R., Natawidjaja, D.H., Sapiie, B., Cummins, P., 2019. Earthquake Geology of the Lembang Fault, West Java, Indonesia. Tectonophysics 751, 180–191. https://doi.org/10.1016/j.tecto.2018.12.014

Daryono, Marfai, M.A., Ruslanjari, D., Winaryo, Purwaominta, A., 2009. Gempabumi Tasikmalaya Jawa Barat 2 September 2009. J. Kebencanaan Indones. 2, 595–606.

Gumilar, I., 2013. Pemetaan karakteristik penurunan muka tanah (land subsidence) berdasarkan integrasi metode GPS dan INSAR serta estimasi kerugian keekonomian akibat dampak penurunan muka tanah (Wilayah studi: Cekungan Bandung)[Doctoral Dissertation]. Institut Teknologi Bandung.

Gupta, I.D., 2002. The state of the art in seismic hazard analysis. ISET J. Earthq. Technol. 39, 311–346.

Hutasoit, L.M., 2009. Kondisi Permukaan Air Tanah dengan dan tanpa peresapan buatan di daerah Bandung: Hasil Simulasi Numerik. Indones. J. Geosci. 4, 177–188. https://doi.org/10.17014/IJOG.4.3.177-188

Koesoemadinata, R.P., Hartono, D., 1981. Stratigrafi dan sedimentasi daerah Bandung, in: Proceedings PIT X Ikatan Ahli Geologi Indonesia, Bandung. Ikatan Ahli Geologi Indonesia, Jakarta, pp. 318–336.

Krinitzsky, E.L., 2002. How to obtain earthquake ground motions for engineering design. Eng.Geol. 65, https://doi.org/10.1016/S0013- 7952(01)00098-91–16.

Krinitzsky, E.L., 1995. Deterministic versus probabilistic seismic hazard analysis for critical structures. Eng. Geol. 40, 1–7. https://doi.org/10.1016/0013- 7952(95)00031-3

Meilano, I., Abidin, H.Z., Andreas, H., Gumilar, I., Sarsito, D., Hanifa, R., Rino, Harjono, H., Kato, T., Kimata, F., Fukuda, Y., 2012. Slip Rate Estimation of the Lembang Fault West Java from Geodetic Observation. J. Disaster Res. 7, 12–18. https://doi.org/10.20965/jdr.2012.p0012

Sari, A.M., Fakhrurrozi, A., Syahbana, A.J., 2020. Peak Ground Acceleration on Bedrock using Probability Seismic Hazard Analysis Methods in Bandung City, in: Proceedings of the Proceedings of the 7th Mathematics, Science, and Computer Science Education International Seminar, MSCEIS 2019, October 12th, 2019, Bandung, West Java, Indonesia. EAI. https://doi.org/10.4108/eai.12-10- 2019.2296498

Sari, A.M., Soebowo, E., Fakhrurrozi, A.,Syahbana, A.J., Tohari, A., 2019. Microzonation of Soil Amplification Based on Microtremor, Spt, and Cptu Data in Bandung Basin. Ris. Geol. dan Pertamb. 29, 53. https://doi.org/10.14203/risetgeotam2019.v 29.978

Sengara, I.W., Munaf, Y., Susila, I., 2001. Seismic Risk and Site Response Analysis for City of Bandung-Indonesia. Int. Conf. Recent Adv. Geotech. Earthq. Eng. Soil Dyn. 1–6.

Silitonga, P.., 2003. Peta geologi lembar Bandung, Jawa: Geological map of the Bandung quadrangle, Jawa, in: Peta Geologi Bersistem Indonesia. Pusat Penelitian dan Pengembangan Geologi, Bandung.

Soehaimi, A., 2011. Seismotektonik Jawa Barat dan Mikrozonasi Potensi Bencana Gempa Bumi DKI Jakarta. Badan Geologi Kenmenterian ESDM, Bandung.

Sudjatmiko, 2003. Peta Geologi Lembar Cianjur, Jawa: Geological Map of the Cianjur Quadrangle, Jawa, in: Peta Geologi Bersistem Indonesia. Pusat Penelitian dan Pengembangan Geologi, Bandung.

Sunardi, B., 2015. Percepatan Tanah Sintetis Kota Yogyakarta Berdasarkan Deagregasi Bahaya Gempa 6, 211–228.

Supendi, P., Nugraha, A.D., Puspito, N.T., Widiyantoro, S., Daryono, D., 2018. Identification of active faults in West Java, Indonesia, based on earthquake hypocenter determination, relocation, and focal mechanism analysis. Geosci. Lett. 5, 31. https://doi.org/10.1186/s40562-018-0130-y

Syahbana, A.J., Sari, A.M., Soebowo, E., Irsyam, M., Asrurifak, M., Hendriyawan, 2018. Analysis of Bedrock Synthetic Ground Motion on Bandung City using PSHA Method, in: Proceedings 20th Southeast Asian Geotechnical Conference 3rd AGSSEA Conference In Conjunction with 22th HATTI Annual Scientific Meeting Thema Geotechnical Challenge for Mega Infrastructures. Indonesian Society for Geotechnical Engineering, Jakarta, pp. 290– 295.

Tim Pusat Studi Gempa Nasional, 2017. Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017.

West Java Province Metropolitan Development Management (WJPMDM), 2013. Konsep Awal Pengembangan Metropolitan Bandung Raya, WJP-MDM - Mei 2013. Bandung.

Youngs, R.R., Chiou, S.J., Silva, W.J., Humphrey, J.R., 1997. Strong ground motion attenuation relationships for subduction zone earthquakes. Seismol. Res. Lett. 68, 58–73. https://doi.org/10.1785/gssrl.68.1.58

Yulianto, E., 2011. Understanding the Earthquake Threat to Bandung from the Lembang fault. Jakarta.

Zhao, J.X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., Ogawa, H., Irikura, K., Thio, H.K., Somerville, P.G., Fukushima, Yasuhiro, Fukushima, Yoshimitsu, 2006. Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bull. Seismol. Soc. Am. 96, 898–913. https://doi.org/10.1785/0120050122




DOI: http://dx.doi.org/10.14203/risetgeotam2020.v30.1138

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Anggun Mayang Sari, Afnindar Fakhrurrozi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS

 

Indexed by:

        

 

Plagiarism checker: