PEMETAAN PERMEABILITAS MAGNETIK PERMUKAAN BERBASIS CITRA SAR POLARIMETRIK DENGAN PENGUKURAN IN SITU DI LAPANGAN GUNUNG API

Asep Saepuloh, Edo Kharisma Army, Zaki Hilman

Abstract


Pemetaan parameter fisis berupa permeabilitas magnetik permukaan pada zona lemah yang terkait dengan aktivitas tektonik maupun vulkanik perlu dilakukan seiring dengan meningkatnya aktivitas kegempaan maupun kegunungapian dalam beberapa tahun terakhir. Pendeteksian keberadaan zona lemah umumnya dilakukan berdasarkan parameter kelurusan struktur geologi, reflektansi spektra, dan temperatur permukaan dengan memanfaatkan citra satelit optis. Makalah ini mengolah parameter yang berbeda berupa permeabilitas magnetik permukaan (μr), yaitu parameter fisis yang diturunkan dari citra satelit Polarimetric Synthetic Aperture Radar (PolSAR) dengan polarisasi penuh (quad-polarization) dan diverifikasi dengan pengukuran in situ. Parameter μr permukaan merupakan salah satu parameter yang digunakan untuk mengidentifikasi keberadaan zona lemah jalur fluida termal dari bawah sampai ke permukaan gunung api aktif. Aktivitas hidrotermal mengakibatkan degradasi nilai magnetik batuan di sekitarnya, sehingga ekstraksi nilai permeabilitas magnetik permukaan μr dianggap sangat efektif untuk mengidentifikasi jalur fluida termal di permukaan. Modifikasi pada metode dielectric from Polarimetric Synthetic Aperture Radar (dPSAR) menggunakan citra PolSAR dilakukan untuk mendapatkan parameter permeabilitas magnetik permukaan μr, yaitu kemampuan permukaan tanah dalam menerima respon medan magnet, disamping permitivitas dielektrik εr. Pengukuran μr in situ di lapangan menggunakan alat ukur Ferromaster Magnetic Permeability Meter dilakukan untuk menganalisis tingkat akurasi μr dari hasil inversi dPSAR. Berdasarkan uji validasi, nilai koefisien determinasi R2 yang diperoleh cukup tinggi, yaitu sekitar 0,73 antara μr hasil dPSAR dan pengukuran lapangan. Selain itu, hasil uji normalitas menunjukkan nilai residual antara keduanya terdistribusi normal. Hal ini mengindikasikan bahwa pendeteksian μr dengan metode dPSAR memiliki potensi untuk dikembangkan dan diaplikasikan lebih lanjut dalam pemetaan fisis geologi di permukaan.

ABSTRACT - Surface Magnetic Permeability Mapping Using Sar Polarimetric and In Situ Measurement at Volcanic Field. Physical parameters mapping of surface magnetic permeability in weak zones associated with tectonic and volcanic activity is necessary due to the increasing seismic and volcanic activity in recent years. Typically, weak zones are detected from lineament related geological structures, reflectance spectra, and surface temperature visually on optical satellite images. This paper processed a different physical parameter of surface magnetic permeability (μr) derived from the Polarimetric Synthetic Aperture Radar (PolSAR) quad-polarization satellite image that was verified by field measurement. The μr was used to identify the weak zones connected to the fluid path of the subsurface hydrothermal system of an active volcano. The activity of hydrothermal fluids through the weak zones is responsible for the degradation of the magnetic permeability of the host rocks so that extracting μr is effective in identifying fluid path at the surface. A modification has been applied to the dielectric from Polarimetric Synthetic Aperture Radar (dPSAR) method using the PolSAR image by inverting the μr, in addition to εr parameters, that served as capability of the ground surface responds to the magnetic field. Measurement of μr in the field using Ferromaster Magnetic Permeability Meter was carried out to analyze the accuracy of the inverted μr from the dPSAR method. According to the validation test of μr that derived from dPSAR and field measurement, a high coefficient determination R2 of 0.73 was achieved. In addition, the normality test showed that residual values were distributed normally. Therefore, the μr inversion using dPSAR method has the potential to be developed and applied for advanced physical surface geological mapping.



Keywords


PolSAR, dPSAR, geology, magnetic, thermal

References


Campbell, B.A., Garvin, J.B., 1993. Lava flow topographic measurements for radar data interpretation. Geophysical research letters 20, 831–834.

Cassidy, N.J., Jol, H.M., 2009. Electrical and magnetic properties of rocks, soils and fluids. Elsevier, Kidlington, UK.

Cressie, N., 1990. The origins of kriging. Mathematical geology 22, 239–252.

Gaffney, E.S., Damjanac, B., Valentine, G.A., 2007. Localization of volcanic activity: 2. Effects of pre-existing structure. Earth and Planetary Science Letters 263, 323–338.

Gudmundsson, A., Loetveit, I.F., 2005. Dyke emplacement in a layered and faulted rift zone. Journal of Volcanology and Geothermal Research 144, 311–327.

Haeruddin, H., Saepuloh, A., Heriawan, M.N., Kubo, T., 2016. Identification of linear features at geothermal field based on Segment Tracing Algorithm (STA) of the ALOS PALSAR data, in: IOP Conference Series: Earth and Environmental Science. p. 012003.

Hassani, H., Silva, E., 2015. A Kolmogorov-Smirnov based test for comparing the predictive accuracy of two sets of forecasts. Econometrics 3, 590–609. https://doi.org/10.3390/econometrics3030590

Kurniawahidayati, B., 2018. Karakteristik struktur permeabel pada citra satelit ALOS PALSAR berdasarkan integrasi studi kelurusan dengan metode modified Segment Tracing Algorithm (mSTA) dan studi lapangan di lapangan panas bumi Darajat. ITB.

Kurniawahidayati, B., Nugroho, I.A., Mulyana, R.S., Saepuloh, A., 2017. Preliminary study of near surface detections at geothermal field using optic and SAR imageries. Presented at the IOP Conference Series: Earth and Environmental Science, IOP Publishing, p. 012019.

Nelder, J.A., Mead, R., 1965. A simplex method for function minimization. The computer journal 7, 308–313.

Rosenqvist, A., Shimada, M., Suzuki, S., Ohgushi, F., Tadono, T., Watanabe, M., Tsuzuku, K., Watanabe, T., Kamijo, S., Aoki, E., 2014. Operational performance of the ALOS global systematic acquisition strategy and observation plans for ALOS-2 PALSAR-2. Remote Sensing of Environment 155, 3–12.

Rosenqvist, A., Shimada, M., Watanabe, M., 2004. ALOS PALSAR: Technical outline and mission concepts. Presented at the 4th International Symposium on Retrieval of Bio-and Geophysical Parameters from SAR Data for Land Applications, Innsbruck, Austria, pp. 1–7.

Saepuloh, A., 2019. Prinsip dan aplikasi pengindraan jauh geologi gunung api pendekatan fisis dan observasi geologi lapangan, 1st ed. ITB Press, Bandung, Indonesia.

Saepuloh, A., Haeruddin, H., Heriawan, M.N., Kubo, T., Koike, K., Malik, D., 2018. Application of lineament density extracted from dual orbit of Synthetic Aperture Radar (SAR) images to detecting fluids paths in the Wayang Windu geothermal field (West Java, Indonesia), in: Geothermics. pp. 145–155. https://doi.org/10.1016/j.geothermics.2017.11.010

Saepuloh, A., Koike, K., Heriawan, M.N., Kubo, T., 2016. Quantifying surface roughness to detect geothermal manifestations from Polarimetric Synthetic Aperture Radar (PolSAR) data, in: Proceedings of the 41th Annual Stanford Geothermal Workshop, Stanford University, California.

Saepuloh, A., Koike, K., Omura, M., 2012. Applying Bayesian decision classification to Pi-SAR polarimetric data for detailed extraction of the geomorphologic and structural features of an active volcano. IEEE Geoscience and Remote Sensing Letters 9, 554–558.

Saepuloh, A., Koike, K., Urai, M., Sumantyo, J.T.S., 2015. Identifying surface materials on an active volcano by deriving dielectric permittivity from polarimetric SAR data. IEEE Geoscience and Remote Sensing Letters 12, 1620–1624.

Saepuloh, A., Suryantini, S., Chris, H., Hewson, R., 2017. Simulating ground thermal anomaly under conditions of dense vegetation based on lab and field measurements to support thermal infrared remote sensing techniques, in: Proceedings The 5th Indonesia International Geothermal Convention & Exhibition (IIGCE). Indonesian Geothermal Association.

Saepuloh, A., Urai, M., Aisyah, N., Sunarta, Widiwijayanti, C., Subandriyo, Jousset, P., 2013. Interpretation of ground surface changes prior to the 2010 large eruption of Merapi volcano using ALOS/PALSAR, ASTER TIR and gas emission data. Journal of Volcanology and Geothermal Research, Merapi eruption 261, 130–143. https://doi.org/10.1016/j.jvolgeores.2013.05.001

Susantoro, T.M., 2019. Model Geobiokimia Permukaan Lapangan Migas Berbasis Penginderaan Jauh dan Geologi di Cekungan Sedimen Produksi Hidrokarbon Jawa Barat Utara. Institut Teknologi Bandung, Bandung.




DOI: http://dx.doi.org/10.14203/risetgeotam2020.v30.1080

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Asep Saepuloh, Edo Kharisma Army, Zaki Hilman

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS

 

Indexed by:

        

 

Plagiarism checker: