UNCONFINED GROUNDWATER FLOW PATTERN AND FACIES CHANGES AT WAY HUWI VILLAGE, SOUTH LAMPUNG
Abstract
Way Huwi Village is located in South Lampung, near the Institut Teknologi Sumatera (ITERA). The purposes of this research is to know the unconfined groundwater flow pattern and groundwater facies changes. We measured the depth of water table at nine dig wells, analyzed piper diagram for groundwater facies identification. Then, we integrated groundwater flow patterns and groundwater facies from each well to analyze groundwater facies change pattern in research area. The result indicated that the unconfined groundwater flows from SW to NE of research area, following higher (SW) to lower elevation (NE). There are six patterns of unconfined groundwater facies changes: from Facies Na-Cl to Facies Na-HCO3-Cl, Facies Na-HCO3-Cl to Facies Ca-Mg-HCO3, Facies Na-HCO3-Cl to Facies Na-Cl, Facies Na-HCO3-Cl to Facies Na-SO4-Cl, Facies Ca-Mg-HCO3 to Facies Na-SO4-Cl, and Facies Ca-Mg-HCO3 to Facies Na-HCO3-Cl.
ABSTRAK - Pola aliran airtanah tidak tertekan dan perubahan fasiesnya di Desa Way Huwi, Lampung Selatan.
Desa Way Huwi terletak di Lampung Selatan, di dekat Institut Teknologi Sumatera (ITERA). Tujuan dari penelitian ini adalah untuk mengetahui perubahan pola aliran airtanah dan fasies airtanah yang terjadi. Kami mengukur kedalaman muka airtanah pada sembilan sumur gali, menganalisis Diagram Piper untuk mengetahui fasies airtanah. Kemudian kami mengintegrasikan pola aliran airtanah dan fasies airtanah setiap sumur untuk mengetahui pola perubahan fasies air tanah. Hasil analisa menunjukkan bahwa airtanah tidak tertekan mengalir dari Barat Daya ke Timur Laut mengikuti ketinggian yang lebih tinggi (SW) ke ketinggian yang lebih rendah (NE). Ada enam pola perubahan fasies airtanah tidak tertekan: dari Facies Na-Cl ke Facies Na-HCO3-Cl, Facies Na-HCO3-Cl ke Facies Ca-Mg-HCO3, Facies Na-HCO3-Cl ke Facies Na-Cl, Facies Na -HCO3-Cl ke Facies Na-SO4-Cl, Facies Ca-Mg-HCO3 ke Facies Na-SO4-Cl, dan Facies Ca-Mg-HCO3 ke Facies Na-HCO3-Cl
Keywords
Full Text:
PDFReferences
Badan Standarisasi Nasional, 2008. Air dan air limbah – Bagian 58 : Metoda pengambilan contoh air tanah.
Dhanwinder-singh, K.H.S.H., 2011. Geochemistry and assessment of hydrogeochemical processes in groundwater in the southern part of Bathinda District of Punjab, Northwest India, 1823–1833. https://doi.org/10.1007/s12665-011-0989-9
Edet, Anieken; Worden, R.H., 2009. Monitoring of the physical parameters and evaluation of the chemical composition of river and groundwater in Calabar (Southeastern Nigeria). Environ. Monit. Assess.
Esteller, M. V., Kondratenko, N., Expósito, J.L., Medina, M., Martin del Campo, M.A., 2017. Hydrogeochemical characteristics of a volcanic-sedimentary aquifer with special emphasis on Fe and Mn content: A case study in Mexico. J. Geochemical Explor. 180, 113–126. DOI: 10.1016/j.gexplo.2017.06.002
Gaillardet, J., Dupre, B., Louvat, P., Allegre, C.J., 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3–30. DOI: 10.1016/S0009-2541(99)00031-5
Houston, U. of, 2001. web [WWW Document]. URL https://uh.edu/~geos6g/1330/weath.html (accessed 4.22.20).
Kut, K.M.K., Sarswat, A., Bundschuh, J., Mohan, D., 2018. Water as key to the Sustainable Development Goals of South Sudan – A water quality assessment of Eastern Equatoria State. Groundw. Sustain. Dev. DOI: 10.1016/j.gsd.2018.07.005
Mangga, S.A; Amirudin; Suwarti, T; Gafoer, S.S., 1993. Peta Geologi Lembar TanjungKarang, Sumatera. pp. 3–13.
Meybeck, M., 1987. Global chemical weathering of surficial rocks estimated from river dissolved loads. Am. J. Sci. DOI: 10.2475/ajs.287.5.401
Pazand, K., Khosravi, D., Ghaderi, M.R., Rezvanianzadeh, M.R., 2018. Identification of the hydrogeochemical processes and assessment of groundwater in a semi-arid region using major ion chemistry: A case study of Ardestan basin in Central Iran. Groundw. Sustain. Dev. 6, 245–254. DOI: 10.1016/j.gsd.2018.01.008
Setiadi, H; Ruhijat, S., 1993. Hydrogeological Map, Tanjung Karang Sheet 1:250.000.
Siringoringo, L.P., Rizki, R., Nababan, J., 2019. Engineering, Environment , and Technology Hydrogeochemical and Groundwater Assessment for Drinking Purpose at ITERA Campus Area and Its Surroundings. J. Geosci. Eng. Environ. Technol. 04, 40–48. DOI: 10.25299/jgeet.2019.4.1.2478
Yang, Q., Li, Z., Ma, H., Wang, L., Martín, J.D., 2016. Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the Southeastern part of Ordos basin, China. Environ. Pollut. 218, 879–888. DOI: 10.1016/j.envpol.2016.08.017
Yudhoyono, S.B., 2011. Daftar cekungan airtanah di Indonesia.
Zaidi, F.K., Mogren, S., Mukhopadhyay, M., Ibrahim, E., 2016. Evaluation of groundwater chemistry and its impact on drinking and irrigation water quality in the eastern part of the Central Arabian graben and trough system, Saudi Arabia. J. African Earth Sci. 120, 208–219. DOI: 10.1016/j.jafrearsci.2016.05.012
Zhang, F., Jin, Z., Yu, J., Zhou, Y., Zhou, L., 2015. Hydrogeochemical processes between surface and groundwaters on the northeastern Chinese Loess Plateau: Implications for water chemistry and environmental evolutions in semi-arid regions. J. Geochemical Explor. 159, 115–128. DOI: 10.1016/j.gexplo.2015.08.010
DOI: http://dx.doi.org/10.14203/risetgeotam2020.v30.1076
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Luhut Pardamean Siringoringo, Sandi Maulana
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS
Indexed by:
Plagiarism checker: