STRUCTURAL AND EARTHQUAKE EVALUATIONS ALONG JAVA SUBDUCTION ZONE, INDONESIA

Adi Patria, Atin Nur Aulia

Abstract


Java Subduction is a zone of trench perpendicular convergence of Australian Plate and Southeast Asia in the south of Java. It is characterized by an almost E-W trending trench with an eastward increase of convergence velocity. Three major earthquakes with tsunamis have been caused by deformation along this subduction zone. Although many studies have undertaken to understand the nature of the subduction system, a clear relationship between structures and earthquake activities remains poorly explained. In this study, we used bathymetry, residual bathymetry, and published seismic reflection profiles to evaluate structural and morphological elements, then link the observations to earthquake activity along Java Subduction Zone. Based on seafloor morphology, characteristics of the accretionary wedge and forearc basin varies along the trench in response to the variation of seafloor morphology. Features such as seamounts and ridges which were observed in the oceanic basin may be subducted beneath accretionary wedge and disrupt the morphology of accretionary wedge, forearc basin, and trench. Earthquake activities are generally dominated by normal fault solutions in the trench, which is attributed to plate bending faults while thrust fault solution is observed in the forearc basin area. Thrust fault activities in accretionary wedge are decreased to the east, where there is no thrust fault solution observed in the eastern end of the subduction zone. Few strike-slip focal mechanisms are observed and mainly located within the subducting oceanic plate. Structures and subducting oceanic features may control the earthquake activity where deformation occurred at the edge of these features. The two largest thrust fault earthquakes in 1994 and 2006 are interpreted as a result of deformation along with plate interface on soft or unconsolidated sediment above the incoming plate. The largest normal fault earthquake with a magnitude 8.3 is possibly caused by a crustal scale-fault that breaks the entire oceanic crust.

ABSTRAK - Evaluasi struktur dan gempa bumi di sepanjang zona subduksi Jawa, Indonesia.

Subduksi Jawa adalah zona konvergensi yang tegak lurus palung antara Lempeng Australia dan Asia Tenggara di selatan Jawa. Hal ini ditandai dengan palung berarah hampir barat–timur dengan peningkatan kecepatan konvergensi ke arah timur. Tiga gempa bumi besar dengan tsunami disebabkan oleh deformasi di sepanjang zona subduksi ini. Meskipun banyak penelitian telah dilakukan untuk memahami sifat sistem subduksi, hubungan antara struktur dan kegiatan gempa bumi masih kurang jelas. Dalam studi ini, kami menggunakan batimetri, batimetri residual, dan profil refleksi seismik untuk mengevaluasi elemen struktur dan morfologi, kemudian menghubungkan pengamatan dengan aktivitas gempa bumi di sepanjang zona subduksi Jawa. Berdasarkan morfologi dasar laut, karakteristik prisma akresi dan cekungan busur muka bervariasi di sepanjang palung sebagai respon terhadap variasi morfologi dasar laut. Fitur seperti seamount dan punggungan yang diamati di cekungan samudera menunjam di bawah prisma akresi dan mengganggu morfologi prisma akresi, cekungan busur muka, dan palung. Aktivitas gempa bumi umumnya didominasi oleh patahan normal di palung, yang dikaitkan dengan patahan tekukan lempeng sedangkan patahan naik diamati di daerah cekungan busur muka. Aktivitas sesar naik di dalam prisma akresi berkurang ke arah timur, di mana tidak ada patahan naik yang teramati di ujung timur zona subduksi. Beberapa mekanisme patahan mendatar diamati dan terutama terletak di dalam lempeng samudera yang menunjam. Struktur dan fitur di kerak samudra yang menunjam dapat mengontrol aktivitas gempa bumi di mana deformasi terjadi di tepian fitur ini. Dua gempa bumi besar dengan sifat patahan naik pada tahun 1994 dan 2006 ditafsirkan sebagai hasil dari deformasi di sepanjang antarmuka lempeng pada sedimen lunak atau tidak terkonsolidasi di atas lempeng yang masuk. Gempa bumi besar dengan sifat sesar normal magnitude 8,3 mungkin disebabkan oleh patahan skala-kerak yang menghancurkan seluruh kerak samudera.


Keywords


Subduction Zone, Bathymetry, Earthquake, Indonesia

Full Text:

PDF

References


Abercrombie RE, Antolik M, Felzer K, Ekström G (2001) The 1994 Java tsunami earthquake: Slip over a subducting seamount. Journal of Geophysical Research: Solid Earth 106:6595–6607 . doi: 10.1029/2000JB900403

Bassett D, Watts AB (2015) Gravity anomalies, crustal structure, and seismicity at subduction zones: 1. Seafloor roughness and subducting relief. Geochemistry, Geophysics, Geosystems 16:1508–1540 . doi: 10.1002/2014GC005684

Bilek SL, Engdahl ER (2007) Rupture characterization and aftershock relocations for the 1994 and 2006 tsunami earthquakes in the Java subduction zone. Geophysical Research Letters 34:1–5 . doi: 10.1029/2007GL031357

Chauhan APS, Singh SC, Hananto ND, Carton H, Klingelhoefer F, Dessa J-X, Permana H, White NJ, Graindorge D, Team SS (2009) Seismic imaging of forearc backthrusts at northern Sumatra subduction zone. Geophysical Journal International 179:1772–1780 . doi: 10.1111/j.1365-246X.2009.04378.x

Daryono MR, Natawidjaja DH, Sieh K (2012) Twin‐Surface Ruptures of the March 2007 M>6 Earthquake Doublet on the Sumatran FaultTwin‐Surface Ruptures of the March 2007 M>6 Earthquake Doublet on the Sumatran Fault. Bulletin of the Seismological Society of America 102:2356–2367 . doi: 10.1785/0120110220

DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophysical Journal International 181:1–80 . doi: 10.1111/j.1365-246X.2009.04491.x

Dessa J-X, Klingelhoefer F, Graindorge D, André C, Permana H, Gutscher M-A, Chauhan A, Singh SC, Team the S-OS (2009) Megathrust earthquakes can nucleate in the forearc mantle: Evidence from the 2004 Sumatra event. Geology 37:659–662 . doi: 10.1130/G25653A.1

Dominguez S, Lallemand SE, Malavieille J, Von Huene R (1998) Upper plate deformation associated with seamount subduction. Tectonophysics 293:207–224 . doi: 10.1016/S0040-1951(98)00086-9

Dominguez S, Malavieille J, Lallemand SE (2000) Deformation of accretionary wedges in response to seamount subduction: Insights from sandbox experiments. Tectonics 19:182–196 . doi: 10.1029/1999TC900055

Fritz HM, Kongko W, Moore A, McAdoo B, Goff J, Harbitz C, Uslu B, Kalligeris N, Suteja D, Kalsum K, Titov V, Gusman A, Latief H, Santoso E, Sujoko S, Djulkarnaen D, Sunendar H, Synolakis C (2007) Extreme runup from the 17 July 2006 Java tsunami. Geophysical Research Letters 34:1–5 . doi: 10.1029/2007GL029404

Geersen J (2019) Sediment-starved trenches and rough subducting plates are conducive to tsunami earthquakes. Tectonophysics 762:28–44 . doi: https://doi.org/10.1016/j.tecto.2019.04.024

Hall R (2012) Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics 570–571:1–41 . doi: 10.1016/j.tecto.2012.04.021

Hamilton W (1979) Tectonics of the Indonesian Region. USGS Professional Paper. United States Printing Office, Washington

Hauksson E (1990) Earthquakes, faulting, and stress in the Los Angeles Basin. Journal of Geophysical Research: Solid Earth 95:15365–15394 . doi: 10.1029/JB095iB10p15365

Hayes GP, Wald DJ, Johnson RL (2012) Slab1.0: A three-dimensional model of global subduction zone geometries. Journal of Geophysical Research: Solid Earth 117: . doi: 10.1029/2011JB008524

Heine C, Muller D, Gaina C (2004) Reconstructing the Lost Eastern Tethys Ocean Basin : Convergence History of the SE Asian Margin and Marine Gateways. In: Clift P, Kuhnt W, Wang P, Hayes D (eds) Continent‐Ocean Interactions Within East Asian Marginal Seas. Geophysical Monograph Series, Washington, pp 37–54

Henstock TJ, McNeill LC, Bull JM, Cook BJ, Gulick SPS, Austin JA, Permana H, Djajadihardja YS (2016) Downgoing plate topography stopped rupture in the A.D. 2005 Sumatra earthquake. Geology 44:71–74 . doi: 10.1130/G37258.1

Henstock TJ, McNeill LC, Tappin DR (2006) Seafloor morphology of the Sumatran subduction zone: Surface rupture during megathrust earthquakes? Geology 34:485–488 . doi: 10.1130/22426.1

Kato T, Ito T, Abidin HZ, Agustan (2007) Preliminary report on crustal deformation surveys and tsunami measurements caused by the July 17, 2006 South off Java Island Earthquake and Tsunami, Indonesia. Earth, Planets and Space 59:1055–1059 . doi: 10.1186/BF03352046

Klingelhoefer F, Gutscher MA, Ladage S, Dessa JX, Graindorge D, Franke D, Andre C, Permana H, Yudistira T, Chauhan A (2010) Limits of the seismogenic zone in the epicentral region of the 26 December 2004 great Sumatra–Andaman earthquake: results from seismic refraction and wide-angle reflection surveys and thermal modeling. Journal of Geophysical Research 115:B01304 . doi: 10.1029/2009JB006569

Kopp H, Flueh ER, Petersen CJ, Weinrebe W, Wittwer A, Scientists M (2006) The Java margin revisited: Evidence for subduction erosion off Java. Earth and Planetary Science Letters 242:130–142 . doi: 10.1016/j.epsl.2005.11.036

Kopp H, Hindle D, Klaeschen D, Oncken O, Reichert C, Scholl D (2009) Anatomy of the western Java plate interface from depth-migrated seismic images. Earth and Planetary Science Letters 288:399–407 . doi: 10.1016/j.epsl.2009.09.043

Kopp H, Klaeschen D, Flueh ER, Bialas J (2002) Crustal structure of the Java margin from seismic wide-angle and multichannel reflection data. Journal of Geophysical Research 107:1–24

Kopp H, Kukowski N (2003) Backstop geometry and accretionary mechanics of the Sunda margin. Tectonics 22: . doi: 10.1029/2002TC001420

Krabbenhoeft A, Weinrebe RW, Kopp H, Flueh ER, Ladage S, Papenberg C, Planert L (2010) Bathymetry of the Indonesian Sunda margin-relating morphological features of the upper plate slopes to the location and extent of the seismogenic zone. Natural hazards and Earth System Sciences 10:1899–1911 . doi: 10.5194/nhess-10-1899-2010

Lüschen E, Müller C, Kopp H, Engels M, Lutz R, Planert L, Shulgin A, Djajadihardja YS (2011) Structure, evolution and tectonic activity of the eastern Sunda forearc, Indonesia, from marine seismic investigations. Tectonophysics 508:6–21 . doi: 10.1016/j.tecto.2010.06.008

Lynnes CS, Lay T (1988) Source Process of the Great 1977 Sumba Earthquake. Journal of Geophysical Research: Solid Earth 93:13407–13420 . doi: 10.1029/JB093iB11p13407

Malod JA, Karta K, Beslier MO, Zen MT (1995) From normal to oblique subduction: Tectonic relationships between Java and Sumatra. Journal of Southeast Asian Earth Sciences 12:85–93 . doi: 10.1016/0743-9547(95)00023-2

Masson DG, Parson LM, Milsom J, Nichols G, Sikumbang N, Dwiyanto B, Kallagher H (1990) Subduction of seamounts at the Java Trench: a view with long-range sidescan sonar. Tectonophysics 185:51–65 . doi: 10.1016/0040-1951(90)90404-V

McCaffrey R (2009) The Tectonic Framework of the Sumatran Subduction Zone. Annual Review of Earth and Planetary Sciences 37:345–366 . doi: 10.1146/annurev.earth.031208.100212

Mukti MM, Singh SC, Deighton I, Hananto ND, Moeremans R, Permana H (2012) Structural evolution of backthrusting in the Mentawai Fault Zone, offshore Sumatran forearc. Geochemistry, Geophysics, Geosystems 13:1–21 . doi: 10.1029/2012GC004199

Natawidjaja DH, Triyoso W (2007) the Sumatran Fault Zone — From Source To Hazard. Journal of Earthquake and Tsunami 01:21–47 . doi: 10.1142/S1793431107000031

Newcomb K, McCann W (1987) Seismic History and Seismotectonics of the Sunda Arc. Journal of Geophysical Research 92:421–439 . doi: 10.1029/JB092iB01p00421

Nugraha AMS, Hall R (2012) CENOZOIC HISTORY OF THE EAST JAVA FOREARC. In: Proceedings Indonesian Petroleum Association, 36th Annual Conventionh Annual Convention, INDONESIAN PETROLEUM ASSOCIATION Thirty-Sixth Annual Convention & Exhibition, May 2012. pp IPA12-G-028

Pesicek JD, Thurber CH, Zhang H, Deshon HR, Engdahl ER, Widiyantoro S (2010) Teleseismic double-difference relocation of earthquakes along the Sumatra-Andaman subduction zone using a 3-D model. Journal of Geophysical Research: Solid Earth 115:1–20 . doi: 10.1029/2010JB007443

Planert L, Kopp H, Lueschen E, Mueller C, Flueh ER, Shulgin A, Djajadihardja Y, Krabbenhoeft A (2010) Lower plate structure and upper plate deformational segmentation at the Sunda‐Banda arc transition, Indonesia. Journal of Geophysical Research 115:B08107 . doi: 10.1029/2009JB006713

Raharja R, Gunawan E, Meilano I, Abidin HZ, Efendi J (2016) Long aseismic slip duration of the 2006 Java tsunami earthquake based on GPS data. Earthquake Science 29:291–298 . doi: 10.1007/s11589-016-0167-y

Shulgin A, Kopp H, Mueller C, Planert L, Lueschen E, Flueh ER, Djajadihardja Y (2011) Structural architecture of oceanic plateau subduction offshore Eastern Java and the potential implications for geohazards. Geophysical Journal International 184:12–28 . doi: 10.1111/j.1365-246X.2010.04834.x

Sieh K, Natawidjaja D (2000) Neotectonics of the Sumatran fault, Indonesia. Journal of Geophysical Research: Solid Earth 105:28295–28326 . doi: 10.1029/2000JB900120

Simons WJF, Socquet A, Vigny C, Ambrosius BAC, Abu SH, Promthong C, Subarya C, Sarsito DA, Matheussen S, Morgan P, Spakman W (2007) A decade of GPS in Southeast Asia: Resolving Sundaland motion and boundaries. Journal of Geophysical Research: Solid Earth 112:B003868 . doi: 10.1029/2005JB003868

Singh SC, Carton H, Tapponnier P, Hananto ND, Chauhan APS, Hartoyo D, Bayly M, Moeljopranoto S, Bunting T, Christie P, Lubis H, Martin J (2008) Seismic evidence for broken oceanic crust in the 2004 Sumatra earthquake epicentral region. Nature Geoscience 1:777–781 . doi: 10.1038/ngeo336

Singh SC, Hananto N, Mukti M, Robinson DP, Das S, Chauhan A, Carton H, Gratacos B, Midnet S, Djajadihardja Y, Harjono H (2011) Aseismic zone and earthquake segmentation associated with a deep subducted seamount inSumatra. Nature Geoscience 4:308–311 . doi: 10.1038/ngeo1119

Susilohadi S, Gaedicke C, Ehrhardt A (2005) Neogene structures and sedimentation history along the Sunda forearc basins off southwest Sumatra and southwest Java. Marine Geology 219:133–154 . doi: 10.1016/j.margeo.2005.05.001

Tsuji Y, Imamura F, Matsutomi H, Synolakis CE, Nanang PT, Jumadi, Harada S, Han SS, Arai K, Cook B (1995) Field survey of the East Java earthquake and tsunami of June 3, 1994. Pure and Applied Geophysics 144:839–854 . doi: 10.1007/BF00874397

Widiyantoro S, Pesicek JD, Thurber CH (2011) Subducting slab structure below the eastern Sunda arc inferred from non-linear seismic tomographic imaging. In: Hall R, Cottam MA, Wilson MEJ (eds) The SE Asian Gateway: History and Tectonics of the Australia-Asia Collision, 355th edn. Geological Society of London, London, pp 139–155




DOI: http://dx.doi.org/10.14203/risetgeotam2020.v30.1072

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Adi Patria, Atin Nur Aulia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS

 

Indexed by:

        

 

Plagiarism checker: