Imobilitas Unsur Tanah Jarang (UTJ) selama Mineralisasi Cu pada Granitoid Sulit Air, Provinsi Sumatra Barat

Ronaldo Irzon, Ildrem Syafri, Iwan Setiawan, Johanes Hutabarat, Purnama Sendjaja, Agus Didit Haryanto

Abstract


Transfer massa terkait perubahan komposisi geokimia batuan induk akibat alterasi hidrotermal, metasomatisme, maupun pelapukan menjadi topik untuk mempelajari proses geologi terkait. Perubahan massa tersebut dapat dijelaskan dan divisualisasikan melalui metode Isocon. Mineralisasi tembaga teridentifikasi pada salah satu bagian dari Granitoid Sulit Air di Kecamatan X Koto Diatas, Kabupaten Solok. Tulisan ini bertujuan untuk menjelaskan transfer massa akibat mineralisasi Cu pada Granitoid Sulit Air dengan diagram Isocon. XRF dan ICP-MS di Laboratorium Pusat Survey Geologi, Kementerian ESDM (2015) digunakan sebagai perangkat pengukuran kadar oksida utama, unsur jejak, dan unsur tanah jarang. Berdasarkan korelasi antara kandidatnya, Al2O3 dianggap sebagai oksida immobile. K2O, Rb, Sr, dan Ba terkayakan sedangkan oksida utama lain maupun unsur jejak diketahui terkurangkan akibat mineralisasi Cu. UTJ  terdeteksi immobile akibat mineralisasi Cu dengan karakter yang relatif sama antara batuan segar dan teralterasi. Meski demikian, sebagian Ce teroksidasi akibat proses mineralisasi sehingga menurunkan anomali positif Ce. Penurunan nilai anomali negatif Eu pada sampel teralterasi dapat mengakibatkan plagioklas semakin terkurangkan. Karakter tipe-I Granitoid Sulit Air diperjelas melalui nilai perbandingan A/CNK, perbandingan N2O terhadap K2O, perbandingan Rb/Sr, dan perbandingan Rb/Ba. Afinitas granitoid busur kepulauan menunjukkan bahwa pembentukan Granitoid Sulit Air terkait dengan vulkanisme di bagian barat Sumatra.

Mass transfer related changes in the geochemical composition of the host rock due to hydrothermal alteration, metamorphism, and weathering is an interesting topic for studying related geological processes. The transfer can be explained and visualized through the Isocon method. Copper mineralization was identified in an area of Sulit Air Suite at X Koto Diatas District, Solok Regency. This paper aims to explain mass transfer due to Cu mineralization on Sulit Air Suite with Isocon diagrams. XRF and ICP-MS of the Center for Geological Survey Laboratory were applied to measure the major oxides, trace elements, and rare earth elements contents of the samples. Based on the correlation between candidates, Al2O3 is considered as the immobile species. K2O, Rb, Sr, and Ba appear to be enriched while other major oxides and rare elements are reduced due to Cu mineralization. REEs are immobile due to Cu mineralization with relatively the same character between fresh and altered rocks. However, some Ce was probably oxidized due to the mineralization process thus reducing the positive anomaly Ce. Moreover, the more negative Eu anomaly means that plagioclase might have been replaced by K-feldspar due to this alteration. The I-type characters of Sulit Air Suite are clarified by  A/CNK value, N2O to K2O comparison, Rb/Sr ratio, and Rb/Ba ratio. The affinity to the volcanic arc granitoid implies that the Sulit Air Suite is related to volcanism in the western part of Sumatra.

 


Keywords


Cu mineralization, geochemistry, Isocon, Sulit Air Suite

References


Armbrust, G. A., Oyarzun M, J., dan Arias, J., 1977. Rubidium as a guide to ore in Chilean porphyry copper deposits. Economic Geology, 72(6), 1086-1100.

Barber, A. J., Crow, M. J., dan Milsom, J. (eds.)., 2005. Sumatra: Geology, resources and tectonic evolution. Geological Society of London.

Brimhall, G. H., dan Dietrich, W. E., 1987. Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis. Geochimica et Cosmochimica Acta, 51(3), 567-587.

Boomeri, M., Nakashima, K. dan Lentz, D. R., 2009. The Miduk porphyry Cu deposit, Kerman, Iran: A geochemical analysis of the potassic zone including halogen element systematics related to Cu mineralization processes. Journal of Geochemical Exploration, 103(1), 17-29.

Chappell, B. W., 1974. Two contrasting granite types. Pacific Geoogy., 8, 173-174.

Chubarov, V., Amosova, A. dan Finkelshtein, A., 2016. X‐ray fluorescence determination of sulfur chemical state in sulfide ores. X‐Ray Spectrometry, 45(6), 352-356.

Cobbing, E. J., 2005. Granites. Geological Society, London, Memoirs, 31(1), 54-62.

Devi, P. R., Trupti, A. C., Nicy, A., Dalvi, A. A., Swain, K. K., Wagh, D. N. dan Verma, R., 2015. Evaluation of uncertainty in the energy dispersive X-ray fluorescence determination of platinum in alumina. Analytical Methods, 7(12), 5345-5351.

Gong, Q., Yan, T., Li, J., Zhang, M. dan Liu, N., 2016. Experimental simulation of element mass transfer and primary halo zone on water-rock interaction. Applied Geochemistry, 69, 1-11.

Grant, J. A., 1986. The isocon diagram; a simple solution to Gresens' equation for metasomatic alteration. Economic geology, 81(8), 1976-1982.

Grant, J. A., 2005. Isocon analysis: A brief review of the method and applications. Physics and Chemistry of the Earth, Parts A/B/C, 30(17-18), 997-1004.

Gresens, R. L., 1967. Composition-volume relationships of metasomatism. Chemical geology, 2, 47-65.

Helgeson, H. C., Brown, T. H., Nigrini, A., dan Jones, T. A., 1970. Calculation of mass transfer in geochemical processes involving aqueous solutions. Geochimica et Cosmochimica Acta, 34(5), 569-592.

Higashino, F., Kawakami, T., Tsuchiya, N., Satish–Kumar, M., Ishikawa, M., Grantham, G. H., Sakata, S., Hattori, K. dan Hirata, T., 2015. Geochemical behavior of zirconium during Cl–rich fluid or melt infiltration under upper amphibolite facies metamorphism—A case study from Brattnipene, SørRondane Mountains, East Antarctica. Journal of Mineralogical and Petrological Sciences, 110(4), 166-178.

Hwang, J., dan Moon, S. H., 2018. Geochemical evidence for K-metasomatism related to uranium enrichment in Daejeon granitic rocks near the central Ogcheon Metamorphic Belt, Korea. Geosciences Journal, 1-13.

Idrus, A., Kolb, J. dan Meyer, F. M., 2009. Mineralogy, lithogeochemistry and elemental mass balance of the hydrothermal alteration associated with the gold‐rich BatuHijau porphyry copper deposit, Sumbawa Island, Indonesia. Resource geology, 59(3), 215-230.

Imtihanah, 2000. Isotopic Dating of the Sumatran Fault System (SFS) (Doctoral dissertation, University of London).

Imtihanah, 2005. Rb/Sr Geochronology and Geochemistry of Granitoid Rocks From Western Part of Central Sumatra. Jurnal Sumber Daya Geologi, 15(2), 103-117

Irzon, R., Syafri, I., Hutabarat, J. dan Sendjaja, P., 2016. REE Comparison Between Muncung Granite Samples and their Weathering Products, Lingga Regency, Riau Islands. Indonesian Journal on Geoscience, 3(3), 149-161.

Irzon, R. dan Abdullah, B., 2016. Geochemistry of Ophiolite Complex in North Konawe, Southeast Sulawesi. Eksplorium: Buletin Pusat Teknologi Bahan Galian Nuklir, 37(2), 101-114.

Irzon, R. 2018., Limbah Pencucian Bauksit Sebagai Sumber Unsur Tanah Jarang Potensial; Studi Kasus Pulau Selayar, Provinsi Kepulauan Riau. Buletin Sumber Daya Geologi, 13(1), 45-57.

Irzon, R. 2019. Proses Pembentukan dan Asal Material Formasi Kayasa di Halmahera Berdasarkan Unsur Jejak dan Unsur Tanah Jarang. Eksplorium, 40(1), 19-32.

Ishihara, S., 1977. The magnetite-series and ilmenite-series granitic rocks. Mining geology, 27(145), 293-305.

Koning, T. and Aulia, K, 1985. Petroleum geology of the Ombilin Intermontane Basin, West Sumatra. In: Indonesian Petroleum Association, Proceedings of the 14th Annual Convention, Jakarta, I, 117-137.

Le Vaillant, M., Barnes, S. J., Fiorentini, M. L., Santaguida, F. dan Törmänen, T, 2016. Effects of hydrous alteration on the distribution of base metals and platinum group elements within the Kevitsa magmatic nickel sulphide deposit. Ore Geology Reviews, 72, 128-148.

Liu, Y., Ma, S., Zhu, L., Sadeghi, M., Doherty, A. L., Cao, D. dan Le, C., 2016. The multi-attribute anomaly structure model: An exploration tool for the Zhaojikou epithermal Pb-Zn deposit, China. Journal of Geochemical Exploration, 169, 50-59.

Martin, R. F., dan Piwinskii, A. J., 1972. Magmatism and tectonic settings. Journal of Geophysical Research, 77(26), 4966-4975.

Maulana, A., Yonezu, K. dan Watanabe, K., 2014. Geochemistry of rare earth elements (REE) in the weathered crusts from the granitic rocks in Sulawesi Island, Indonesia. Journal of Earth Science, 25(3), 460-472.

McDonough, W. F. dan Sun, S. S., 1995. The composition of the Earth. Chemical geology, 120(3-4), 223-253.

McCourt, W. J., Crow, M. J., Cobbing, E. J., dan Amin, T. C., 1996. Mesozoic and Cenozoic plutonic evolution of SE Asia: evidence from Sumatra, Indonesia. Geological Society, London, Special Publications, 106(1), 321-335.

Middelburg, J. J., van der Weijden, C. H., dan Woittiez, J. R., 1988. Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chemical Geology, 68(3-4), 253-273.

Middlemost, E. A., 1985. An Introduction to Igneous petrology, Magma and magmatic Rocks. Longmans.

Migaszewski, Z. M. dan Gałuszka, A., 2015. The characteristics, occurrence, and geochemical behavior of rare earth elements in the environment: a review. Critical reviews in environmental science and technology, 45(5), 429-471.

Montreuil, J. F., Corriveau, L., & Grunsky, E. C., 2013. Compositional data analysis of hydrothermal alteration in IOCG systems, Great Bear magmatic zone, Canada: to each alteration type its own geochemical signature. Geochemistry: Exploration, Environment, Analysis, 13, 229–247.

Nishimoto, S., Yoshida, H., Asahara, Y., Tsuruta, T., Ishibashi, M. dan Katsuta, N., 2014. Episyenite formation in the Toki granite, central Japan. Contributions to Mineralogy and Petrology, 167(1), 960.

Parsapoor, A., Khalili, M. dan Maghami, M., 2017. Discrimination between mineralized and unmineralized alteration zones using primary geochemical haloes in the Darreh-Zar porphyry copper deposit in Kerman, southeastern Iran. Journal of African Earth Sciences, 132, 109-126.

Pearce, J. A., Harris, N. B. dan Tindle, A. G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of petrology, 25(4), 956-983.

Pulunggono, A., dan Cameron, N. R. 1984. Sumatran microplates, their characteristics and their role in the evolution of the Central and South Sumatra basins. In: Indonesian Petroleum Association, Proceedings of the 13th Annual Convention, 13, 1221 - 1443.

Quesnel, B., de Veslud, C. L. C., Boulvais, P., Gautier, P., Cathelineau, M. dan Drouillet, M., 2017. 3D modeling of the laterites on top of the Koniambo Massif, New Caledonia: refinement of the per descensum lateritic model for nickel mineralization. Mineralium Deposita, 52(7), 961-978.

Rolland, Y., Cox, S., Boullier, A. M., Pennacchioni, G. dan Mancktelow, N., 2003. Rare earth and trace element mobility in mid-crustal shear zones: insights from the Mont Blanc Massif (Western Alps). Earth and Planetary Science Letters, 214(1-2), 203-219.

Sato, K., 1991. K-Ar ages of granitoids in Central Sumatra, Indonesia. Bulletin Geological Survey of Japan, 42, 111-181.

Schwark, L., Jung, S., Hauff, F., Garbe-Schönberg, D. dan Berndt, J., 2018. Generation of syntectoniccalc-alkaline, magnesian granites through remelting of pre-tectonic igneous sources–U-Pb zircon ages and Sr, Nd and Pb isotope data from the Donkerhoek granite (southern Damaraorogen, Namibia). Lithos, 310, 314-331.

Shand, S.J., 1943. Eruptive rocks. D. Van Nostrand Company, New York.

Silitonga, P. H. dan Kastowo, D., 1995. Geological Map of the Solok Quadrangle, Sumatra (Quadrangle 0815) Scale 1: 250,000. Geological Research and Development Centre Bandung.

Sonzogni, Y., Treiman, A. H. dan Schwenzer, S. P., 2017. Serpentinite with and without brucite: A reaction pathway analysis of a natural serpentinite in the Josephine ophiolite, California. Journal of Mineralogical and Petrological Sciences, 112(2), 59-76.

Štemprok, M., Pivec, E., & Langrová, A., 2005. The petrogenesis of a wolframite-bearing greisen in the Vykmanov granite stock, Western Krušné hory pluton (Czech Republic). Bulletin of Geosciences, 80(3), 163-184.

Tang, Y., Li, X., Xie, Y., Liu, L., Lan, T., Meffre, S. dan Huang, C., 2017. Geochronology and geochemistry of late Jurassic adakitic intrusions and associated porphyry Mo–Cu deposit in the Tongcun area, east China: Implications for metallogenesis and tectonic setting. Ore Geology Reviews, 80, 289-308.

Taylor, G., dan Eggleton, R. A., 2001. Regolith Geology and Geomorphology. John Wiley & Sons.

Tropper, P., Manning, C. E., & Harlov, D. E., 2011. Solubility of CePO4 monazite and YPO4 xenotime in H2O and H2O–NaCl at 800 C and 1 GPa: Implications for REE and Y transport during high-grade metamorphism. Chemical Geology, 282(1-2), 58-66.

Tungalag, N., Jargalan, S., Khashgerel, B. E., Mijiddorj, C. dan Kavalieris, I., 2018. Characteristics of the Late Devonian Tsagaan Suvarga Cu–Mo deposit, Southern Mongolia. Mineralium Deposita, 1-12.

Ugidos, J. M., Barba, P., Valladares, M. I., Suárez, M. dan Ellam, R. M., 2016. The Ediacaran–Cambrian transition in the Cantabrian Zone (northern Spain): sub-Cambrian weathering, K-metasomatism and provenance of detrital series. Journal of the Geological Society, 173(4), 603-615.

Verdiansyah, O., 2016. Perubahan Unsur Geokimia Batuan Hasil Alterasi Hidrotermal di Gunung Wungkal, Godean, Yogyakarta. Kurvatek, 1, 56-67.

Verhaert, M., Bernard, A., Saddiqi, O., Dekoninck, A., Essalhi, M. dan Yans, J., 2018. Mineralogy and Genesis of the Polymetallic and Polyphased Low Grade Fe-Mn-Cu Ore of JbelRhals Deposit (Eastern High Atlas, Morocco). Minerals, 8(2), 39.

Wang, Q., Zhu, D. C., Zhao, Z. D., Guan, Q., Zhang, X. Q., Sui, Q. L., Hu, Z.C. dan Mo, X. X., 2012. Magmatic zircons from I-, S-and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study. Journal of Asian Earth Sciences, 53, 59-66.

Whalen, J. B., Currie, K. L. dan Chappell, B. W., 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to mineralogy and petrology, 95(4), 407-419.

Wood, J. R., & Hewett, T. A., 1982. Fluid convection and mass transfer in porous sandstones - A theoretical model. Geochimica et Cosmochimica Acta, 46(10), 1707-1713.

Yang, X., Yang, X., Zhang, Z., Chi, Y., Yu, L., dan Zhang, Q., 2011. A porphyritic copper (gold) ore-forming model for the Shaxi-Changpushan district, Lower Yangtze metallogenic belt, China: geological and geochemical constraints. International Geology Review, 53(5-6), 580-611.




DOI: http://dx.doi.org/10.14203/risetgeotam2019.v29.1019

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Ronaldo Irzon, Ildrem Syafri, Iwan Setiawan, Johanes Hutabarat, Purnama Sendjaja, Agus Didit Haryanto

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright of Riset Geologi dan Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS

 

Indexed by:

        

 

Plagiarism checker: